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Abstract

Differential equations have wide-ranging applications in science and engineering but can rarely
be solved exactly. There is growing interest in approximating the solutions to these equations using
unsupervised neural networks, which provide closed-form, differentiable solutions. While most
neural network solvers use simple feedforward architectures, a method called Differential Equation
GAN (DEQGAN), which uses generative adversarial networks to solve differential equations in
a fully unsupervised manner, has been shown to outperform classical neural networks in terms of
predictive accuracy. However, DEQGAN is comparatively unstable to train and sensitive to hyper-
parameters.

In this thesis, we explore a variety of approaches to improve the robustness and utility of DEQ-
GAN. First, we adaptively improve its training convergence by adding instance noise based on the
generator and discriminator losses. Second, we utilize the equation residuals to detect and terminate
poor-performing runs early. Third, we show how these techniques enable DEQGAN to obtain reli-
able results that outperform those obtained by classical unsupervised neural networks on a range of
challenging PDEs and systems of ODEs, including the non-linear Burgers’, Allen-Cahn, Hamilton,
and modified Einstein’s gravity equations. Finally, we propose a multi-head DEQGAN architecture
and demonstrate that transfer learning can be applied to discover solutions to multiple initial con-
ditions at once or to different parameterizations of a given systemmore efficiently. We find that by
leveraging a pre-trained base generator, transfer learning greatly stabilizes DEQGAN training and
can improve solution accuracy.*

*All code is publicly available at https://github.com/dylanrandle/denn.
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Carbon Impact

The recent success of deep learning can largely be attributed to the advent of big data and
big compute. The combination of these two resources has given rise to powerful AI models like
OpenAI’s GPT-3, which can, for example, generate incredibly convincing human-like text.6 Unfor-
tunately, most of these models demand significant computational resources for training, drawing
massive amounts of electricity and creating a large carbon impact.

While the models trained in this thesis come nowhere close to the scale of GPT-3, our experi-
ments required expensive hyperparameter tuning jobs and were run on Harvard’s FAS Research
Computing cluster. More specifically, this research utilized a total of 13,272 hours of compute
performed primarily on Intel Cascade Lake CPU cores.

Lacoste et al. 28 created anML Emissions Calculator that shows how this information can be
combined with other factors to estimate carbon footprint in kilograms of CO2e, or carbon dioxide
equivalent, which is a standardized unit of global warming potential. According to ElectricityMap,
the carbon efficiency of the electrical grid in the New England region is 0.275kgCO2eq/kWh. Fur-
ther, the CPUs utilized have TDP ranging between 85W and 150W.

Plugging this information into the ML Emissions Calculator, we estimate the total carbon foot-
print of this thesis to be 310–547kgCO2e, which is equivalent to driving around 1,000miles in a
car or eating about 100 cheeseburgers.
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0
Introduction

Over the past decade, deep learning has achieved major successes on a wide range of tasks.

From explaining jokes, to writing code,11 to beating the world champion in Go,49 deep neural net-

works have equipped computers with abilities that were previously thought impossible and are even

associated with human-like intelligence.
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Aside from these exciting capabilities, deep learning can also be an incredibly useful tool in fields

such as scientific computing and mathematical physics. In recent years, a wave of research has ap-

plied neural networks to solving differential equations, which describe the dynamics of natural phe-

nomena that occur on practically every scale in the universe and have many applications in science

and engineering. Fields such as physics, chemistry, biology, and economics use differential equations

to model complex phenomena and rely on computational methods to approximate their solutions

efficiently and accurately.

Although traditional numerical methods for solving differential equations perform well and the

theory of their stability and convergence is well established, neural networks offer an array of com-

pelling advantages, including that they provide solutions that are closed-form,29 suffer less from the

“curse of dimensionality,”21,43,50,17 do not propagate numerical errors,38 provide a more accurate in-

terpolation scheme,29 and can leverage transfer learning for the fast discovery of new solutions.14,12

Further, neural networks do not require an underlying grid and offer a meshless approach to solving

differential equations. This makes it possible to use trained neural networks, which typically have

small memory footprints, to generate solutions over arbitrary grids in a single forward pass.

A variety of neural network methods for solving differential equations has emerged. Some of

these are supervised and learn the dynamics of real-world systems from data.44,10,16,4 Others are

semi-supervised, learning general solutions to a differential equation and extracting a best fit solu-

tion based on observational data.41 The third category, which we explore in this thesis, is unsuper-

vised neural networks, which are trained in a data-free manner that depends solely on the network’s

predictions and the equation itself.44,20,42,37,52,38,21,43,50
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Most unsupervised neural networks use simple feed-forward architectures and require the specifi-

cation of a loss function over the equation residuals. Motivated by the lack of justification for a par-

ticular choice of loss function, Randle et al. 45 proposed Differential Equation GAN (DEQGAN),

which uses generative adversarial networks to “learn the loss function” for optimizing the network.

While DEQGAN can obtain solution accuracies that outperform classical neural networks by mul-

tiple orders of magnitude, it is comparatively unstable to train and sensitive to hyperparameters.

These issues are common among GAN training algorithms, and we draw upon recent developments

in the GAN literature to address them in the context of DEQGAN.

In this thesis, we explore several approaches for improving the robustness and utility of DEQ-

GAN. In Chapter 1, we elaborate on how differential equations can be solved using unsupervised

neural networks that use feed-forward and GAN-based architectures. In Chapter 2, we introduce

techniques to improve the convergence of DEQGAN and detect poor-performing runs early. Chap-

ter 3 presents results on a range of ordinary differential equations (ODEs) and partial differential

equations (PDEs), comparing DEQGANwith popular numerical methods and classical neural net-

works that useL2, L1 and Huber loss functions. In Chapter 4, we propose a multi-head DEQGAN

architecture and demonstrate how transfer learning can be leveraged to more efficiently obtain solu-

tions to multiple initial conditions or different parameterizations of a given problem. We end with a

discussion of the limitations of our approach and suggestions for future work.
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Nearly everything is interesting if you look into it deeply

enough.

Richard Feynman

1
Unsupervised Learning of Solutions to

Differential Equations

Neural networks are highly expressive models that have attracted a great deal of atten-

tion in recent years. Loosely based on the structure of the brain, they input data through a network

4



(a) Single layer network (b) Network with three layers

Figure 1.1: Two different neural network architectures. The blue and orange dots represent inputs and outputs to the
network, respectively, while the green represent “hidden nodes” that form layers. Both of these networks are universal
function approximators.

of interconnected nodes to obtain a desired output. A single layer of a neural network corresponds

to a subset of these nodes and performs a simple series of operations:

1. Linear transformation by a weight matrixW

2. Translation by a vector b

3. Application of a non-linear activation f

Therefore, a neural network with only one layer, as pictured in Figure 1.1a, transforms an input

vector x to produce the output y as follows.

y = f(Wx+ b) (1.1)

Hornik et al. 22 showed that even this single-layer neural network is a universal approximator,

given a sufficient number of nodes in the layer. Figure 1.1b shows an example of a neural network

that uses three layers, which is also a universal approximator. In general, so-called “deep” neural
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networks combine many layers in this hierarchical fashion, giving rise to both increased expressivity

and the capacity to learn latent representations of the inputs.

These properties are very useful for predicting and modeling complex physical phenomena and

have inspired researchers to apply deep learning to a vast array of problems in mathematical physics.

However, neural networks also have major drawbacks. For example, they learn purely from cor-

relations in data and may violate known laws of physics if those laws are not fully represented in

the data. Further, neural networks usually consist of so many parameters and apply such complex

transformations of the input data that it can be very difficult to determine how they actually make

predictions. For these reasons, neural networks are often referred to as uninterpretable “black-box”

models.

These limitations have given rise to a growing interest in developing neural networks that incor-

porate known physics. Because much of physics is expressed in the language of differential equa-

tions, one approach is to train neural networks to learn solutions to ordinary (ODEs) and partial

differential equations (PDEs). In the following sections, we elaborate on how this can be achieved

without access to ground-truth training data – that is, in an unsupervised fashion.

1.1 Feed-ForwardNeural Networks

Solving differential equations with unsupervised neural networks was originally proposed by Dis-

sanayake & Phan-Thien 13 , who considered equations of the form

F (t, u(t), u′(t), u′′(t), . . . ) = 0 (1.2)
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Figure 1.2: Classical method for solving differential equations with unsupervised neural networks. We provide an input
t to the network and obtain uθ(t), which we re‐parameterize so that it exactly satisfies any initial or boundary condi‐
tions. This gives our proposed solution ũ(t), with which we calculate a pre‐specified lossL(ũ, t) that the network is
trained to minimize.

where u(t) is the solution of the equation and u′(t), u′′(t), . . . are the first, second, and higher

order derivatives of the solution. As illustrated in Figure 1.2, we denote t as the input to the neural

network and uθ(t) as the corresponding output. Plugging uθ(t) into the left-hand side of Equation

1.2 gives the equation residuals, which will be equal to zero when uθ(t) = u(t). Therefore, we train

the network to minimize the loss

L(uθ, t) =
∑
t∈D

F (t, uθ(t), u
′
θ(t), u

′′
θ(t), . . . )

2 (1.3)

whereD specifies the domain of the equation. This formalism can be generalized to handle spa-

tial dimensions and multidimensional problems simply be passing multiple inputs to the network,

which we do in our experiments and describe further in Chapter 3.

During training, it is common to sample t ∈ D from a fixed or noisy grid. In our experiments, we

primarily adopt the latter approach, which Randle et al. 45 found reduces overfitting. More specif-

ically, we perturb each point in an evenly spaced grid by adding zero-centered Gaussian noise with
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standard deviation∆t/3, where∆t is the spacing between points.

Equation 1.3 gives a good indication of how close the output of the neural network is to the true

solution, but ignores the initial condition required to specify the problem. Therefore, it is com-

mon to re-parameterize the neural network outputs so that they exactly satisfy this condition, as

suggested byMattheakis et al. 38 . For initial value problems with u(t)
∣∣
t=t0

= u0, we can use

ũ(t) = u0 +
(
1− e−(t−t0)

)
uθ(t) (1.4)

which forces the predicted solution to exactly satisfy the initial condition at t = t0 and exponen-

tially decays this constraint for t > t0. Chen et al. 9 have implemented re-parameterizations to

handle a range of other conditions required to specify different types of ODEs and PDEs, such as

Neumann and Dirichlet boundary conditions. In Chapter 3, we elaborate on several of these re-

parameterizations in relation to the particular equations we study in this thesis.

Plugging Equation 1.4 into Equation 1.3, therefore, the loss function becomes

L(ũ, t) =
∑
t∈D

F (t, ũ(t), ũ′(t), ũ′′(t), . . . )2 (1.5)

Equation 1.5 is also known as the sum of squared residuals and can be iteratively optimized using

backpropagation. Because neural networks provide closed-form, differentiable outputs, we can use

automatic differentiation to compute ũ′(t), ũ′′(t), and any higher order derivatives in the differen-

tial equation.

8



1.2 Generative Adversarial Networks

The basic approach described above has been shown to work well on a wide array of ODEs29,14,38,36

and PDEs.21,50,43,52 However, there is no theoretical justification for the use of any particular loss

function. Equation 1.5 penalizes the squaredL2 of the equation residuals, but it is not clear why

this would be preferred overL1,Huber or any other loss function.

The maximum likelihood principle provides a clear reason to fit data that follow Gaussian and

Laplace noise models withL2 andL1 loss functions, respectively. Given that differential equations

are deterministic and our approach to solving them is entirely unsupervised, we lack an equivalent

justification.

In light of this, Randle et al. 45 proposed Differential Equation GAN (DEQGAN) for solving

differential equations in a fully unsupervised manner using generative adversarial networks.15 The

discriminator network of a GAN can be thought of as “learning the loss function” to train the gen-

erator, thereby eliminating the need for a pre-specified loss function. Recently, Zeng et al. 55 pro-

posed a piecewise continuous loss function that generalizes several common losses, includingL2

andL1. By introducing a trainable parameter, this method adaptively modifies the loss through-

out training. DEQGAN, however, uses a dedicated neural network (the discriminator) to learn the

loss function and is even less restrictive than an adaptive loss. Beyond the context of differential

equations, it has also been shown that where classical loss functions struggle to capture complex

spatio-temporal dependencies, GANs may be an effective alternative.30,31,26

GANs are a type of generative model that uses two neural networks, called the generator and the

9



Figure 1.3: Differential Equation GAN (DEQGAN) method for solving differential equations in an unsupervised fashion.
We provide an input t to the network and obtain uθ(t), which we re‐parameterize so that it exactly satisfies any initial
or boundary conditions. This gives our proposed solution ũ(t), which we use to construct theLHS vector of equation
residuals. We input “fake”LHS data and “real”RHS data into a discriminator, which is trained to differentiate
between the two.

discriminator, to induce a generative distribution pfake(x) that mimics a target data distribution

pdata(x). Informally, this is achieved by training the discriminator to distinguish between “real” data

samples x ∼ pdata(x) and “fake” samples produced by the generator. In particular, the training

procedure optimizes the generatorG and discriminatorD according to

min
G

max
D

V (D,G) = min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))] (1.6)

where z ∼ N (0, 1) denote samples from the latent space, which serve as input to the generator.

Ideally, optimizing Equation 1.6 results in a discriminator that becomes increasingly accurate at

classifying “real” and “fake” samples, and a generator that can produce increasingly realistic “fake”

data.

The classical neural network method for solving differential equations can be extended quite

naturally to the GAN framework. As depicted in Figure 1.3, the DEQGAN training procedure also

10



involves passing points from the domain t ∼ D to a network and re-parameterizing its output to

obtain a proposed solution ũ(t). But rather than calculate a lossL(ũ, t), we use ũ(t) to construct

the “fake” data vector, which we denoteLHS, by plugging ũ(t) into the differential equation.

LHS = F
(
t, ũ(t), ũ′(t), ũ′′(t), . . .

)
(1.7)

Notice that theLHS is simply the residuals of the proposed solution. Because this expression

will be equal to zero when ũ(t) exactly satisfies the differential equation, DEQGAN sets the “real”

data vectorRHS = 0. The effectively fixes the target distribution preal to the Dirac delta function

δ(0).

LettingRHS(i) andLHS(i) be the real and fake samples, respectively, at iteration i, the gra-

dients used to update the weights of the generator and discriminator take the same form as those

derived in the original GAN paper.15

∇θg

1

m

m∑
i=1

log
(
1−D

(
LHS(i)

))
, (1.8)

∇θd

1

m

m∑
i=1

[
logD

(
RHS(i)

)
+ log

(
1−D

(
LHS(i)

))]
(1.9)

By training a GAN in this way, DEQGAN learns to generate solutions ũ(t) such that Equation

1.7 (theLHS vector of equation residuals) is indistinguishable from a vector of zeros, which would

imply that ũ(t) is a good approximate solution to the differential equation.

11



The key difference between classical unsupervised neural networks and DEQGAN is that the

latter frees the network optimization from a pre-specified loss function by leveraging a generator to

automatically learn one that minimizes the equation residuals. In the sections that follow, we build

upon this method and show that it offers major advantages over the classical approach.
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Above all, don’t fear difficult moments. The best comes

from them.

Rita Levi-Montalcini

2
Training Stability

While GANs have achieved state of the art results on a wide range of generative modeling tasks,

they are often difficult to train. As a result, much recent work on GANs has been dedicated to im-

proving their sensitivity to hyperparameters, training stability, and convergence.47,18,51,2,25,27,3,5,39,40

In our experiments, we found that DEQGAN can be sensitive to the generator and discriminator

13



weight initializations and learning rates. We recommend two additional techniques for improving

the robustness of DEQGAN to different hyperparameter values.

2.1 Instance Noise

Sønderby et al. 51 note that the convergence of GANs relies on the existence of a unique optimal

discriminator separating the distribution of “fake” samples pfake produced by the generator, and the

distribution of “real” data preal. In practice, however, there may be many near-optimal discrimina-

tors that pass very different gradients to the generator, depending on their initialization. Arjovsky

& Bottou 2 proved that this problem will arise when there is insufficient overlap between the sup-

ports of pfake and preal. As illustrated by Figure 2.1, the original DEQGAN training algorithm fixes

preal = δ(0), implying that the distribution of “real” data lies in a zero-dimensional manifold. This

makes it very unlikely that pfake and preal will share support in a high-dimensional space at the begin-

ning of training.

Recent works have proposed adding “instance noise” to pfake and preal to encourage their over-

lap,51,2 which amounts to adding noise to theLHS andRHS, respectively, at each iteration of the

DEQGAN training algorithm. Because this makes the discriminator’s job more difficult, we add

Gaussian noise εwith standard deviation equal to the difference between the generator and discrimi-

nator losses, i.e.,

ε = N (0, σ2), σ = ReLU(Lg − Ld) (2.1)

whereLg andLd are the generator and discriminator losses, respectively. As the generator and dis-

14



Figure 2.1: Comparison of “real” (blue) and “fake” (red) data distributions in the original DEQGAN formulation (top) and
with instance noise added to theLHS andRHS samples (bottom).

criminator reach equilibrium, Equation 2.1 will naturally converge to zero, annealing the amount

of noise added. We use the ReLU function because whenLd > Lg, the generator is already able to

fool the discriminator, suggesting that additional noise is not required. In Section 2.3, we conduct

an ablation study and find that this improves the ability of DEQGAN to produce accurate solutions

across a range of hyperparameter settings.
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2.2 ResidualMonitoring

One of the attractive properties of the DEQGAN setup is that theLHS vector of equation resid-

uals gives a direct measure of the quality of the solution at each training iteration. We observe that

theLHS tends to oscillate wildly when DEQGAN training becomes unstable but decreases steadily

throughout successful training runs. By monitoring theL1 norm of theLHS in the first 25% of

training iterations, we are able to easily detect and terminate bad runs if the variance of these values

exceeds some threshold.

Figure 2.2 shows what theL1 norm of theLHS looks like for runs that ended with high (red)

and low (blue) mean squared errors (calculated against the ground truth solution) for three example

problems. Because theLHS may oscillate initially even for successful runs, we use a patience win-

dow in the first 15% of iterations. In all three equations below, we terminate a run if the variance of

the residualL1 norm calculated over the previous 20 iterations exceeds 0.01.

Figure 2.2: Equation residuals in the first 25% of training runs that ended with high (red) and low (blue) mean squared
error for the exponential decay (EXP), non‐linear oscillator (NLO) and coupled oscillator (COO) problems. The black
crosses show the point at which the high MSE runs were terminated early.
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2.3 Ablation study

Figure 2.3: Parallel plot showing the results of 500 DEQGAN experiments on the exponential decay equation with
instance noise. The red lines represent runs which would be terminated early by monitoring the variance of the equation
residuals in the first 25% of training iterations. The mean squared error is plotted on a log10 scale.

To quantify the increased robustness offered by instance noise and residual monitoring, we per-

formed an ablation study comparing the percentage of highMSE (≥ 10−5) runs obtained by 500

randomized DEQGAN runs for the exponential decay equation with and without using these tech-

niques.

Figure 2.3 plots the results of these 500DEQGAN experiments with instance noise added. For

each experiment, we uniformly selected a random seed controlling model weight initialization as an

integer from the range [0, 9], as well as separate learning rates for the discriminator and generator

17



in the range [0.01, 0.1]. We then recorded the final mean squared error after running DEQGAN

training for 1000 iterations. The red lines represent runs which would be terminated early by our

residual monitoring method, while the blue lines represent those which would be run to comple-

tion.

Figure 2.3 shows that the large majority of hyperparameter settings tested with the addition of

instance noise resulted in lowmean squared errors. Further, residual monitoring was able to detect

all runs withMSE≥ 10−5 within the first 25% of training iterations. Approximately half of the

MSE runs in [10−8, 10−5]would be terminated, while 96% of runs withMSE≤ 10−8 would be

run to completion.

Table 2.1 summarizes the results of our ablation study, comparing the percentage of highMSE

runs with and without instance noise and residual monitoring. We see that adding instance noise

decreased the percentage of runs with highMSE and that residual monitoring is highly effective at

filtering out poor performing runs. When used together, these techniques eliminated all runs with

MSE≥ 10−5.

%Runs with HighMSE (≥ 10−5)

NoResidual Monitoring With Residual Monitoring

No Instance Noise 12.4 0.4
With Instance Noise 8.0 0.0

Table 2.1: Summary of the ablation study comparing the results of 500 DEQGAN experiments on the exponential decay
equation (EXP) with and without instance noise. We report the proportion of runs that ended in high MSE solutions and
the proportion of runs that would be terminated early using residual monitoring.

The results of our ablation study agree with previous works, which have found that instance
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noise can improve the training convergence of other GAN training algorithms51,2. Further, residual

monitoring could readily be applied to other unsupervised neural network methods for solving

differential equations and may be useful beyond the context of DEQGAN.
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The miracle of the appropriateness of the language of

mathematics for the formulation of the laws of physics is a

wonderful gift which we neither understand nor deserve.

EugeneWigner

3
Differential Equations

In this section, we present experimental results on a range of ordinary and partial differential

equations. Because we are interested in how our method differs from classical unsupervised neural

networks, for each equation, we compare the performance of DEQGAN to that of networks which

useL2,L1 and Huber loss functions. In addition, we provide results obtained by popular numeri-
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cal approaches, including the fourth-order Runge Kutta (RK4) and finite difference (FD) methods.

To evaluate each method, we calculate the mean squared error of the predicted solution against

ground-truth solutions obtained either analytically or using state of the art numerical solvers. Where

analytical solutions do not exist, we use SciPy’s solve_ivp53 for ODEs and the fast Fourier trans-

form (FFT)7 method for PDEs. We use the original DEQGAN setup but add instance noise to pfake

and preal and use residual monitoring to terminate poor-performing runs in the first 25% of training

iterations. Results on all neural network methods are obtained with hyperparameters tuned for DE-

QGAN. In Appendix A.2, we tune hyperparameters for each classical loss function for comparison

but do not observe a significant difference.

In their original paper, Randle et al. 45 demonstrated that DEQGAN can obtain solutions with

multiple orders of magnitude lower mean squared errors than classical unsupervised neural net-

works on six example equations. In this work, we leverage the added stability offered by instance

noise and residual monitoring to tackle more challenging problems. More specifically, we add six

new equations, including highly non-linear PDEs and systems of ODEs. In Sections 3.1 and 3.2, we

describe these differential equations and compare the performance of DEQGAN to that of classical

neural network methods. In Section 3.3, we provide a summary of the results obtained on the full

suite of twelve equations by all methods, including traditional numerical solvers.

21

solve_ivp


3.1 Ordinary Differential Equations

An ordinary differential equation (ODE) is an equation containing a single independent variable

and derivatives of a dependent variable with respect to that independent variable. Randle et al. 45

previously applied DEQGAN to solve a variety of ODEs and systems of ODEs, including the expo-

nential decay equation, the simple harmonic oscillator, a non-linear oscillator, coupled oscillators,

and the SIR disease model. Results on these problems are provided in Appendix A.3.

Encouraged by the promising results achieved by DEQGAN on these problems, we test our

method on two additional systems of ODEs that exhibit higher degrees of non-linearity and more

complex dynamics.

3.1.1 Hamilton Equations (HAM)

Consider a particle moving through a potential V , the trajectory of which is described by the system

of ordinary differential equations



ẋ(t) = px

ẏ(t) = py

ṗx(t) = −Vx

ṗy(t) = −Vy

(3.1)

We solve the system for x(t)
∣∣
t=0

= 0, y(t)
∣∣
t=0

= 0.3, px(t)
∣∣
t=0

= 1, py(t)
∣∣
t=0

= 0, and t ∈

[0, 1]. The functions x(t) and y(x) represent the horizontal and vertical positions of the particle
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Figure 3.1: Mean squared errors vs. iteration for DEQGAN,L2,L1 and Huber loss for the Hamilton system of ODEs.
We perform ten randomized trials and plot the median (bold) and (25, 75) percentile range (shaded). We smooth the
values using a simple moving average with window size 50.

in time, while px(t) and py(t) represent the velocity functions. Vx and Vy are the derivatives of the

potential with respect to x and y. We construct the potential V by summing ten random bivariate

Gaussians

V = − A

2πσ2

10∑
i=1

exp

(
− 1

2σ2
||x(t)− µi||22

)
(3.2)

where x(t) = [x(t), y(t)]T . We useA = 0.1, σ = 0.1, and sample eachµi = [µx, µy]
T from

[0, 1] × [0, 1] uniformly at random. As these equations lack an analytical solution, we use SciPy’s

solve_ivp53 to obtain ground-truth solutions.

After re-parameterizing the generator outputs to satisfy the initial conditions using Equation 1.4,

we setLHS to be the vector

LHS =

[
dx

dt
− px,

dy

dt
− py,

dpx
dt

+ Vx,
dpy
dt

+ Vy

]T
(3.3)
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Figure 3.2: Visualization of DEQGAN training for the Hamiltonian system of equations. The top left figure plots the
mean squared error vs. iteration. To the right, we plot the predictions of the generator x̂, ŷ, p̂x, p̂y and the numerical
solutions x, y, px, py as functions of time t. On the bottom left, we plot the value of the generator (G) and discrimina‐

tor (D) losses at each iteration. To the right, we show the absolute value of the residuals of the predicted solution F̂j for
each equation j .

andRHS = [0, 0, 0, 0]T + ε, where ε represents added instance noise. Note that theLHS has

an additional dimension over the time points sampled that is not explicitly depicted in Equation 3.3.

We present the results of training DEQGAN to solve this system of differential equations in Figure

3.2. We see that the generator and discriminator losses converge to equilibrium relatively quickly,

and the mean squared error of the DEQGAN solution against the numerical solution decreases

steadily throughout training.

In Figure 3.1, we compare the performance of DEQGAN to that of unsupervised neural net-

works that use classical loss functions by performing ten randomized trials of each method. Note

that for DEQGAN, we use residual monitoring to terminate poor-performing runs within the first

25% of training iterations. WhileL1 andL2 attain rapidly decreasing mean squared errors initially,

they are ultimately outperformed by DEQGAN by several orders of magnitude.
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3.1.2 Modified Einstein’s Gravity Equations (EIN)

The most challenging system of ODEs we consider comes from cosmology. In 1929, Edwin Hub-

ble observed that light emitted by distant galaxies becomes redshifted as it travels through space,

implying the existence of an expanding universe.24 Until the end of the 20th century, cosmologists

believed that gravity would slow this expansion over time, but observations from type Ia supernovae

in 199846 revealed that the opposite is true: the expansion of the universe is accelerating.

Since then, several cosmological models have been proposed to explain this phenomenon. Some

of these, such as theΛCDMmodel, assume that general relativity is the correct theory of gravity

and rely on the existence of dark energy. Others explain the accelerated expansion of the universe by

directly modifying Einstein’s theory.

Hu-Sawicky f(R) gravity is one model that falls into the latter category. In their detailed manuscript,

Chantada et al. 8 explain how f(R) gravity results in a set of modified Friedmann equations, which

can be manipulated to derive the system of five ODEs in Equation 3.4 by introducing the dimen-

sionless variables x, y, v,Ω, and r.
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dx

dz
=

1

z + 1
(−Ω− 2v + x+ 4y + xv + x2)

dy

dz
=

−1

z + 1
(vxΓ(r)− xy + 4y − 2yv)

dv

dz
=

−v

z + 1
(xΓ(r) + 4− 2v)

dΩ

dz
=

Ω

z + 1
(−1 + 2v + x)

dr

dz
=

−rΓ(r)x

z + 1

(3.4)

where

Γ(r) =
(r + b)

[
(r + b)2 − 2b

]
4br

. (3.5)

Unlike the other ODEs we have solved using DEQGAN, this system uses z, which represents red-

shift, as the independent variable. Because larger values of z correspond to earlier points in the his-

tory of the universe, our “initial conditions” are defined at the maximum value of the independent

variable, which we denote z0 (the earliest point in time). More specifically, we solve the equations

for z ∈ [0, z0]. To accommodate the initial value re-parameterization performed by Equation 1.4,

Chantada et al. 8 proposed the variable change z′ = 1− z/z0, which we employ in our experiments

as well.

One additional issue with this system is that r tends to grow rapidly with z. As neural networks

often struggle with unscaled data, we follow Chantada et al. 8 and use the variable change r′ =

ln(r), which prevents the dependent variable from becoming too large.

Putting these two variable changes together, we obtain the more neural network-friendly system
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dx

dz′
=

−z0
−z0(z′ − 1) + 1

(−Ω− 2v + x+ 4y + xv + x2)

dy

dz′
=

−z0
−z0(z′ − 1) + 1

(vxΓ(r′)− xy + 4y − 2yv)

dv

dz′
=

z0v

−z0(z′ − 1) + 1
(xΓ(r′) + 4− 2v)

dΩ

dz′
=

−z0Ω

−z0(z′ − 1) + 1
(−1 + 2v + x)

dr′

dz′
=

z0Γ(r
′)x

−z0(z′ − 1) + 1

(3.6)

where

Γ(r′) =
(er

′
+ b)

[
(er

′
+ b)2 − 2b

]
4ber′

. (3.7)

Finally, Chantada et al. 8 also modify the standard initial value re-parameterization in Equation

1.4 to incorporate additional information about the relationship between f(R) gravity and the

ΛCDMmodel, which is based on the standard theory of general relativity. In particular, the authors

note that as b → 0, f(R) gravity approachesΛCDM. Therefore, b represents the amount of devi-

ation from Einstein’s general relativity. When b = 0, the solution to Equation 3.4 is given exactly

by
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Figure 3.3: Mean squared errors vs. iteration for DEQGAN,L2,L1 and Huber loss for the modified Einstein’s gravity
system of ODEs. We perform ten randomized trials and plot the median (bold) and (25, 75) percentile range (shaded).
We smooth the values using a simple moving average with window size 50.

û(z) =



x(z)

y(z)

v(z)

Ω(z)

r(z)


=



0

Ωm,0(1+z)3+2(1−Ωm,0)
2[Ωm,0(1+z)3+(1−Ωm,0)]

Ωm,0(1+z)3+4(1−Ωm,0)
2[Ωm,0(1+z)3+(1−Ωm,0)]

Ωm,0(1+z)3

Ωm,0(1+z)3+(1−Ωm,0)

Ωm,0(1+z)3+4(1−Ωm,0)
(1−Ωm,0)


(3.8)

We note that û(z0) also gives the final values for Equation 3.4 for any value of b. Therefore, the

final re-parameterization for this problem is

ũ(z′) = û(z′) +
(
1− e−(z′−z′0)

)(
1− e−αb

)
uθ(z

′) (3.9)
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where uθ = [xθ, yθ, vθ,Ωθ, r
′
θ] is the vector of generator outputs for each dependent variable

and α is a hyperparameter that controls how closely theΛCDMmodel approximates the solution

to the f(R) system. The first exponential term in Equation 3.9 ensures that the initial values at z′0

are satisfied and decays this constraint in z′, while the second exponential term shrinks the neural

network output relative to uθ depending on b and α.

In our experiments, we set z0 = 10,Ωm,0 = 0.15, b = 5, α = 1/30 and generate solutions

for z ∈ [0, z0],which corresponds to solving Equation 3.6 for z′ ∈ [0, 1].While the physical

interpretation of these parameters is beyond the scope of this thesis, we note that Equations 3.6 and

3.7 exhibit a high degree of non-linearity, making this a very challenging problem. As the system has

no analytical solution, ground truth solutions are again obtained using SciPy.

TheLHS andRHS for this problem are constructed in the same fashion as described in pre-

vious sections, and the results obtained by DEQGAN are shown in Figure 3.4, where we have re-

turned z′ and r′ to their original scales. We see that the generator and discriminator losses converge

relatively quickly, and the mean squared error decreases steadily to an accurate solution. Towards

larger values of z, however, we observe that the error of the DEQGAN solution tends to increase,

particularly for y(z) and v(z).

Figure 3.3 plots the results of running ten randomized runs of DEQGAN and unsupervised

neural networks that useL2, L1 and Huber loss functions. While the classical loss functions appear

to achieve decreasing mean squared errors in the early training iterations, all three ultimately fail to

solve the system. While these equations have been solved by Chantada et al. 8 using unsupervised

neural networks, their training procedure leveraged a custom loss function enforcing conservation
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Figure 3.4: Visualization of DEQGAN training for the modified Einstein’s gravity system of equations. The top left figure
plots the mean squared error vs. iteration. To the right, we plot the predictions of the generator x̂, ŷ, v̂, Ω̂, r̂ and the
numerical solutions x, y, v,Ω, r as functions of redshift z. On the bottom left, we plot the value of the generator (G)
and discriminator (D) losses at each iteration. To the right, we show the absolute value of the residuals of the predicted
solution F̂j for each equation j .

of mass relationships among the dependent variables.

This highlights a major advantage of DEQGAN over classical unsupervised neural networks:

while theL2, L1 and Huber loss functions fail to capture the complex optimization landscape of

this problem, DEQGAN is able to automatically learn a loss function that optimizes the generator

to produce accurate solutions.
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3.2 Partial Differential Equations

Naturally extending ODEs into higher dimensions, partial differential equations (PDEs) contain

multiple independent variables and partial derivatives of a dependent variable with respect to those

variables. In their original work, Randle et al. 45 used DEQGAN to solve the Poisson equation, a

fundamental linear PDE that we provide results for in Appendix A.3.

Given the importance of PDEs for modeling a wide range of phenomena in science and engineer-

ing, including chemical reactions and fluid dynamics, we add four more to our suite of differential

equations.

3.2.1 Heat Equation (HEA)

The heat equation is a second-order linear partial differential equation that models the diffusion of

heat through a given region. It is one of the most fundamental PDEs and is given by

∂u

∂t
= κ

∂2u

∂x2
(3.10)

where u represents temperature, x is a spatial dimension, and t is a time dimension. With a sin-

gle spatial dimension, this equation could be used to model the dissipation of heat along a one-

dimensional rod over time. By the second law of thermodynamics, the rate at which heat flows from

hotter to cooler regions is proportional to the difference in temperature between them. Equation

3.10 captures this with the 1-dimensional Laplacian ∂2u
∂x2 which, for each point in space, gives the
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Figure 3.5: Mean squared errors vs. iteration for DEQGAN,L2,L1 and Huber loss for the heat equation. We perform
ten randomized trials and plot the median (bold) and (25, 75) percentile range (shaded). We smooth the values using a
simple moving average with window size 50.

average temperature difference between that point and the surrounding region. The model assumes

that heat is transferred evenly and in all directions at a rate controlled by the thermal diffusivity κ.

In our experiments, we solve the equation for κ = 1 and (x, t) ∈ [0, 1]× [0, 0.2]. We subject the

equation to an initial condition and Dirichlet boundary conditions given by

u(x, t)

∣∣∣∣
t=0

= sin(πx)

u(x, t)

∣∣∣∣
x=0

= 0

u(x, t)

∣∣∣∣
x=1

= 0

(3.11)

which has an analytical solution

u(x, t) = e−κπ2t sin(πx). (3.12)

32



Figure 3.6: Visualization of DEQGAN training for the heat equation. The left‐most figure plots the mean squared error
vs. iteration. To the right, we plot the value of the generator (G) and discriminator (D) losses at each iteration. In the
third figure, we plot the prediction of the generator û as a function of position (x, t). The right‐most figure plots the
absolute value of the residual F̂ as a function of (x, t).

To ensure that the DEQGAN solution exactly satisfies the initial and boundary conditions listed

in Equation 3.11, we use the following re-parameterization from Chen et al. 9 .

ũ(x, t) = u(x, t)
∣∣
t=0

+ x̃(1− x̃)
(
1− e−t̃

)
uθ(x, t) (3.13)

where x̃ = x−x0
x1−x0

and t̃ = t−t0
t1−t0

are normalized versions of x and t. Note that x0 and x1 represent

minimum and maximum values, respectively. We see that when t = t0, t̃ = 0,which satisfies the

initial condition. At the boundaries, we have x = x0, x1, giving x̃ = 0, 1, leaving only the values of

the initial condition at the boundaries.

As usual, we construct the “fake” data vector by moving all terms to the left-hand side of the

equation to obtain

LHS =
∂u

∂t
− c2

∂2u

∂x2
(3.14)

and setRHS = ϵ,where ϵ represents instance noise. Figure 3.6 shows that while the generator and
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discriminator losses converge initially, they eventually reach equilibrium, allowing DEQGAN to

obtain highly accurate solutions with residuals distributed evenly across the (x, t) domain.

In Figure 3.5, we see that DEQGAN outperforms the classical unsupervised neural networks by

multiple orders of magnitude across ten randomized trials, suggesting that the discriminator net-

work is able to learn a loss function that is much more effective than theL2, L1 and Huber losses.

With both a time and a spatial dimension, our PDE solution can also be plotted in 3D, as illus-

trated by Figure 3.7. As expected, the temperature decreases evenly along the spatial domain as time

progresses.
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Figure 3.7: DEQGAN solution to the heat equation plotted in 3D. We use perturbed sampling to train on points from a
noisy 32×32 grid and plot the final solution on an evenly spaced 32×32 grid.
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3.2.2 Wave Equation (WAV)

The wave equation is a second-order linear PDE that models the motion of classical waves, such as

those found on strings, in fluids, or in light. The equation is given by

∂2u

∂t2
= c2

∂2u

∂x2
(3.15)

where u is the vertical displacement of the wave, x is a spatial dimension, and t is a time dimension.

Given a single spatial dimension, this equation could be used to model the motion of a vibrating

wave on a string. The constant c specifies the speed of the wave.

We set c = 1 and solve the equation for (x, t) ∈ [0, 1] × [0, 1]. To specify the equation, we

use the same initial condition and boundary conditions as in 3.11 but require an added Neumann

condition due to the second time derivative.

u(x, t)

∣∣∣∣
t=0

= sin(πx)

ut(x, t)

∣∣∣∣
t=0

= 0

u(x, t)

∣∣∣∣
x=0

= 0

u(x, t)

∣∣∣∣
x=1

= 0

(3.16)

This yields the analytical solution

u(x, t) = cos(cπt) sin(πx). (3.17)
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Figure 3.8: Mean squared errors vs. iteration for DEQGAN,L2,L1 and Huber loss for the wave equation. We perform
ten randomized trials and plot the median (bold) and (25, 75) percentile range (shaded). We smooth the values using a
simple moving average with window size 50.

To handle the added Neumann condition, we re-parameterize the generator output according to

the following modification of Equation 3.13.

ũ(x, t) = u(x, t)
∣∣
t=0

+ x̃(1− x̃)
(
1− e−t̃2

)
uθ(x, t) (3.18)

The results of DEQGAN training on this problem are shown in Figure 3.9. We see that the gen-

erator and discriminator losses reach equilibrium relatively quickly. The generator predictions con-

verge to a very accurate solution, as measured by the mean squared error computed against the ana-

lytical solution, and the final residuals are distributed fairly evenly across the problem domain.

Figure 3.8 illustrates how the performance of DEQGAN compares to that of classical unsuper-

vised neural networks that use pre-specified loss functions. As we have observed in other problems,

our method obtains multiple orders of magnitude lower mean squared error than theL1, L2 and
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Figure 3.9: Visualization of DEQGAN training for the wave equation. The left‐most figure plots the mean squared error
vs. iteration. To the right, we plot the value of the generator (G) and discriminator (D) losses at each iteration. In the
third figure, we plot the prediction of the generator û as a function of position (x, t). The right‐most figure plots the
absolute value of the residual F̂ as a function of (x, t).

Huber loss functions.

We also notice that DEQGAN shows greater variability in performance across the ten random-

ized trials than the classical methods. This reflects the relative instability of DEQGAN training.

While instance noise and residual monitoring are effective strategies for maximizing the proportion

of stable runs of DEQGAN, Figure 3.8 indicates that the runs we retain still tend to have greater

variability than the runs of classical unsupervised neural networks.

In Figure 3.10, we visualize the DEQGAN solution in three dimensions. As time progresses,

we observe that the initial sinusoidal wave oscillates in the negative direction until it has been com-

pletely reflected about the x-axis.
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Figure 3.10: Solution to wave equation plotted in 3D. We use perturbed sampling to train on points from a noisy
32×32 grid and plot the final solution on an evenly spaced 32×32 grid.
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3.2.3 Burgers’ Equation (BUR)

Next, we consider Burgers’ viscous equation, an important non-linear PDE that frequently arises in

the modeling of fluids. The equation is given by

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(3.19)

where x is a spatial dimension, t is a time dimension, and u(x, t) represents the speed of the fluid at

x and t. This equation could be used to describe the speed of a fluid running through a thin ideal

pipe over time. The viscosity of the fluid is controlled by the constant ν.

In our experiments, we set ν = 0.001 and solve the equation for (x, t) ∈ [−5, 5] × [0, 2.5].To

specify the equation, we use the following initial condition and Dirichlet boundary conditions:

u(x, t)

∣∣∣∣
t=0

=
1

cosh(x)

u(x, t)

∣∣∣∣
x=−5

= 0

u(x, t)

∣∣∣∣
x=5

= 0

(3.20)

Given these conditions, we can use the re-parameterization in Equation 3.13, which we intro-

duced for the heat equation. As this equation has no analytical solution, we use the fast Fourier

transform (FFT) method7 to obtain accurate ground truth solutions.

The results obtained by DEQGAN are summarized in Figure 3.12. While the generator loss os-

cillates significantly in the first half of training iterations, DEQGAN ultimately converges to an

40



Figure 3.11: Mean squared errors vs. iteration for DEQGAN,L2,L1 and Huber loss for Burgers’ equation. We perform
ten randomized trials and plot the median (bold) and (25, 75) percentile range (shaded). We smooth the values using a
simple moving average with window size 50.

accurate solution, as reflected in the mean squared error plot (note that here we plot only the “val-

idationMSE,” which is computed over a fixed grid, to avoid having to compute the ground truth

solution using the FFT over a different noisy grid at each training iteration).

In the third plot in the top row, we see a “top-down” view of the DEQGAN solution over x and

t, which reveals that the initial condition grows increasingly steep in the positive direction as time

progresses. Note, however, that the solution does not become infinitely steep due to the regularizing

diffusive term νuxx. This behavior is known as shock wave formation and is frequently observed

in solutions to Burgers’ equation. The shock is illustrated more clearly by the second row of plots

in Figure 3.12, which shows snapshots of the solution along x at different points in time. Finally,

the top right plot indicates that nearly all residual error comes from the top of the shock wave. Be-

cause the “ground-truth” FFT solution is, itself, an approximation, however, it is difficult to know

whether this error is truly associated with DEQGAN.

41



Figure 3.12: Visualization of DEQGAN training for Bugers’ equation. The top left figure plots the mean squared error vs.
iteration. To the right, we plot the value of the generator (G) and discriminator (D) losses at each iteration. To the right
of that, we plot the prediction of the generator û as a function of position (x, t). The top right figure plots the absolute
value of the residual F̂ as a function of (x, t). The plots in the second row show snapshots of the 1D wave at different
points along the time domain.

In Figure 3.11, we see that once again, DEQGAN outperforms classical unsupervised neural

networks that useL2, L1 and Huber loss functions. As observed previously, however, DEQGAN

also shows greater variability in mean squared error across randomized runs.

We plot the DEQGAN solution to Burgers’ equation in 3D in Figure 3.13, providing another

view of the shock wave formation. While we sample training points from a noisy 64 × 64 grid, we

make the final prediction over a 1000 × 100 evenly-spaced grid to obtain a smoother 3D plot. In

fact, this highlights one of the advantages of using neural networks to solve differential equations

over numerical methods: because a neural network provides a closed-form solution, we can generate

predictions over any grid we like after training is complete. Numerical methods, on the other hand,

provide an approximate solution over a pre-specified mesh of points.
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Figure 3.13: Solution to Burgers’ equation plotted in 3D. We use perturbed sampling to train on points from a noisy
64×64 grid and plot the final solution on an evenly spaced 1000×100 grid.
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3.2.4 Allen-Cahn Equation (ACA)

Finally, we consider the Allen-Cahn PDE, a non-linear reaction-diffusion equation given by

∂u

∂t
− ϵ

∂2u

∂x2
− u+ u3 = 0 (3.21)

This equation is frequently used to describe phase separation, such as the separation observed

between oil and water, or phase transition, such as that between water vapor and liquid. As in previ-

ous problems, x and t represent spatial and time dimensions, respectively, while u(x, t) is the phase

function between the two substances at each point in space and time. The constant ϵ is related to

the width of the phase boundary between the substances and controls diffusivity.

In our experiments, we use ϵ = 0.001 and generate solutions for (x, t) ∈ [0, 2π] × [0, 5].We

subject the equation to an initial condition and Dirichlet boundary conditions given by

u(x, t)

∣∣∣∣
t=0

=
1

4
sin(x)

u(x, t)

∣∣∣∣
x=0

= 0

u(x, t)

∣∣∣∣
x=2π

= 0

(3.22)

which can again be enforced using the re-parameterization in Equation 3.13. Like Burgers’ equation,

the Allen-Cahn equation has no analytical solutions, so we use the fast Fourier transform to obtain

ground truth solutions for comparison.

Figure 3.15 shows the results of training DEQGAN on this problem. Although the generator
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Figure 3.14: Mean squared errors vs. iteration for DEQGAN,L2,L1 and Huber loss for the Allen‐Cahn equation. We
perform ten randomized trials and plot the median (bold) and (25, 75) percentile range (shaded). We smooth the values
using a simple moving average with window size 50.

and discriminator losses reach equilibrium, the second row of plots clearly illustrates that the DEQ-

GAN solution is accurate almost everywhere except along the boundaries. This is confirmed by the

residual plot in the top right of Figure 3.15, which shows that errors are high along x = x0, x1 for

all t > t0. Further, the plot of mean squared error vs. training iteration suggests that DEQGAN has

converged to a locally optimal solution.

Seeing as the high residual regions appear to be restricted to the boundaries, we suspect that DE-

QGAN is struggling to produce accurate solutions in these regions due to the re-parameterization

in Equation 3.13, which decays the initial condition exponentially in time, but perhaps not quickly

enough. In particular, for small t > t0, the re-parameterized solution may still be down-weighting

the neural network output in comparison to the initial condition, causing errors to arise at small t

and propagate across the time domain.

To address this, we propose re-weighting theLHS by shrinking the residuals associated with
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Figure 3.15: Visualization of DEQGAN training for the Allen‐Cahn equation. The top left figure plots the mean squared
error vs. iteration. To the right, we plot the value of the generator (G) and discriminator (D) losses at each iteration. To
the right of that, we plot the prediction of the generator û as a function of position (x, t). The top right figure plots the
absolute value of the residual F̂ as a function of (x, t). The plots in the second row show snapshots of the 1D wave at
different points along the time domain.

points further along the time domain. Essentially, this makes the residuals associated with points

early in the time domain appear larger, encouraging the discriminator network to pay more atten-

tion to them. More formally, we construct theLHS as follows.

LHS =

(
∂ũ

∂t
− ϵ

∂2ũ

∂x2
− ũ+ ũ3

)
e−t/λ (3.23)

where λ is a hyperparameter that controls the degree of re-weighting. After training DEQGAN

with a new set of tuned hyperparameters that includes λ, we obtained the results shown in Figure

3.16. The second row of plots reveals that the solution is much more accurate along the boundary.

This difference is particularly pronounced between the snapshots at t = 1.667 in Figures 3.15 and
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Figure 3.16: Visualization of DEQGAN training for the Allen‐Cahn equation with theLHS reweighed according to
Equation 3.23.

3.16. In the snapshots at larger t, however, we see that the solution quality begins to degrade, which

makes sense given our re-weighting of theLHS.

In Figure 3.14, we compare the performance of DEQGAN to that of the classical unsupervised

neural networks. Although our method still performs the best, it only narrowly outperforms the

Huber loss function, suggesting that the boundary errors may remain a performance bottleneck.

In Figure 3.17, we plot the final DEQGAN solution obtained with the reweighedLHS in three

dimensions. As we did for Burgers’ equation, we sampled training points from a noisy 64 × 64 grid

but generated a solution for plotting over an evenly-spaced 1000 × 100 grid. Despite the “wrinkles”

in the solution towards the end of the time domain, we still observe the expected transformation of

the sinusoidal initial condition into a square wave over time.
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Figure 3.17: Solution to Allen‐Cahn equation with the reweighedLHS plotted in 3D. We use perturbed sampling to
train on points from a noisy 64×64 grid and plot the final solution on an evenly spaced 1000×100 grid.
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Problem (Key) Equation

Exponential Decay (EXP) ẋ(t) + x(t) = 0
Simple Harmonic Oscillator (SHO) ẍ(t) + x(t) = 0

Non-Linear Oscillator (NLO) ẍ(t) + 2βẋ(t) + ω2x(t) + ϕx(t)2 + ϵx(t)3 = 0

Coupled Oscillators (COO)

{
ẋ(t) = −ty

ẏ(t) = tx

SIR DiseaseModel (SIR)


Ṡ(t) = −βI(t)S(t)/N

İ(t) = βI(t)S(t)/N − γI(t)

Ṙ(t) = γI(t)

Poisson Equation (POS) uxx + uyy = 2x(y − 1)(y − 2x+ xy + 2)ex−y

Table 3.1: Differential equations previously solved by DEQGAN.

3.3 Summary of Results

In addition to the six ODEs and PDEs discussed above, we applied DEQGANwith instance noise

and residual monitoring to the six differential equations solved by Randle et al. 45 in the original DE-

QGAN paper. These equations are listed in Table 3.1. Note that in Appendix A.1, we also specify

the problem domains and hyperparameters used to train DEQGAN for all twelve equations.

In Table 3.2, we report the minimummean squared error obtained by each method over ten

randomized runs for all twelve problems. The mean squared error is computed against analytial

solutions when they exist. Otherwise, we use high quality numerical solvers (SciPy’s solve_ivp53

and the fast Fourier transform7 for ODEs and PDEs, respectively) to obtain ground truth solutions.

The hyperparameters used for all neural networks were tuned for DEQGAN. In Appendix A.2,

we report the mean squared errors obtained by tuning each unsupervised neural network method

separately, but we generally do not observe a significant difference.
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Mean Squared Error

Key L1 L2 Huber DEQGAN Traditional

EXP 3 · 10−3 2 · 10−5 1 · 10−5 3 · 10−16 2 · 10−14 (RK4)
SHO 9 · 10−6 1 · 10−10 6 · 10−11 4 · 10−13 1 · 10−11 (RK4)
NLO 6 · 10−2 1 · 10−9 9 · 10−10 1 · 10−12 4 · 10−11 (RK4)
COO 5 · 10−1 1 · 10−7 1 · 10−7 1 · 10−8 2 · 10−9 (RK4)
SIR 7 · 10−5 3 · 10−9 1 · 10−9 1 · 10−10 5 · 10−13 (RK4)
HAM 1 · 10−1 2 · 10−7 9 · 10−8 1 · 10−10 7 · 10−14 (RK4)
EIN 6 · 10−2 2 · 10−2 1 · 10−2 3 · 10−4 4 · 10−7 (RK4)
POS 4 · 10−6 1 · 10−10 6 · 10−11 4 · 10−13 3 · 10−10 (FD)
HEA 6 · 10−3 3 · 10−5 1 · 10−5 6 · 10−10 4 · 10−7 (FD)
WAV 6 · 10−2 4 · 10−5 6 · 10−4 1 · 10−8 7 · 10−5 (FD)
BUR 4 · 10−3 2 · 10−4 1 · 10−4 4 · 10−6 1 · 10−3 (FD)
ACA 6 · 10−2 9 · 10−3 4 · 10−3 3 · 10−3 2 · 10−4 (FD)

Table 3.2: Minimum mean squared errors achieved by DEQGAN and classical unsupervised neural networks that use
L2, L2 and Huber loss functions across ten randomized trials, as well as the mean squared error achieved by traditional
numerical methods on all twelve problems.

In addition, we calculate the accuracy of the fourth-order Runge Kutta (RK4) and finite differ-

ence (FD) methods against the ground truth solutions for initial and boundary value problems, re-

spectively, in order to see how the neural network methods compare to traditional numerical solvers.

For a fair comparison, we produced numerical solutions using the same number of grid points as

were used to train the neural network methods. These grid sizes are also provided in Appendix A.1.

We observe that DEQGAN outperforms the classical unsupervised neural network methods

on every differential equation tested, often by multiple orders of magnitude. Further, DEQGAN

achieves solution accuracies that are competitive with those attained using the RK4 and FD numeri-

cal methods.

The results summarized in Table 3.2, along with the array of advantages offered by neural net-
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works methods in general – including having closed-form solutions that enable prediction over ar-

bitrary grids and offer more accurate interpolation – provide compelling reasons to use DEQGAN

for solving differential equations over traditional numerical methods. One common criticism of

neural networks, however, is that they often require significant computational resources for training,

making them generally slower than numerical methods. In the next section, we explore how transfer

learning can be leveraged to address this weakness.
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The more clearly we can focus our attention on the won-

ders and realities of the universe about us, the less taste we

shall have for destruction.

Rachel Carson

4
Transfer Learning

Unsupervised neural networks offer an array of advantages over traditional numer-

ical methods for solving differential equations. One common criticism, however, is that they are

usually slow to train. Further, the classical unsupervised approach trains a neural network to gener-

ate solutions to an equation for a particular initial condition, making it computationally expensive
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to obtain solutions for multiple initial conditions. This limits the utility of neural network solvers in

real-world applications such as large-scale physics simulations, which often require many solutions

corresponding to different initial conditions. Numerical methods, by contrast, are generally much

faster.

In addition, and as discussed in Chapter 2, DEQGAN can be sensitive to hyperparameter set-

tings. While techniques such as instance noise and residual monitoring increase the robustness of

DEQGAN to different model weight initializations and learning rates, we found that our method

required hyperparameter tuning for each new equation in order to achieve the best results.

In this chapter, we explore how transfer learning can be leveraged to address both of these con-

cerns. More specifically, we show how to learn a more expressive generator network that is able to

solve a given differential equation or system of equations for multiple initial conditions at once. In

doing so, we are able to 1) drastically reduce the time required for DEQGAN to solve differential

equations for a set of initial conditions, and 2) significantly improve the ability of DEQGAN to

generate accurate solutions to new initial conditions given a single set of hyperparameters.

4.1 Multi-Head DEQGAN

Transfer learning encompasses a broad range of techniques that aim to store the information gained

on one (source) task and adapt it to a different but related (target) task. Much recent work has fo-

cused on developing transfer learning methods for neural networks, in part because they are often

expensive to train, but also because they are able to learn highly expressive and generalizable induc-
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tive biases within their many hidden layers.32,34 Therefore, neural networks not only have much to

gain from transfer learning, but they are also likely to be very good at it.

Transfer learning with neural networks is often performed by training the network on a source

task, “freezing” the majority of the weights in the network (remove them from gradient computa-

tions), and then “fine-tuning” the network by training only the last few layers on the target task.

In this way, it is possible to obtain a model that performs well on the target task without having to

train it from scratch, cutting computational costs significantly. This approach has been successfully

applied to a wide range of problems, especially in computer vision19,32,48,1 and natural language

processing.35,23,54

Recent work has also applied transfer learning to unsupervised neural networks for solving dif-

ferential equations. Flamant et al. 14 proposed neural network solution bundles, which provide

solutions over a range of initial conditions by incorporating equation parameters into the loss func-

tion. More recently, Desai et al. 12 showed how a trained network can be used to perform one-shot

inference for linear ODEs and PDEs. In our work, we apply these ideas to DEQGANwith the goal

of reducing the computational cost of our method while improving its robustness.

Let’s say that we would like to solve a differential equation F (t, u(t), u′(t), u′′(t), ...) for a set

of n initial conditions I = {t(1)0 , t
(2)
0 , . . . , t

(n)
0 }. To do this, we propose a slightly modified DE-

QGAN architecture. As illustrated in Figure 4.1, we first pass an input t into a “base” generator

network. Rather than re-parameterize a single output of this network to satisfy one initial condition,

however, we pass the outputs of the last hidden layer to n output heads h1, h2, . . . , hn,where hi

consists of a single linear layer and is responsible for generating solutions corresponding to initial
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Figure 4.1: Multi‐head DEQGAN architecture for solving a differential equation for n initial conditions at once. An input
t is passed to a base generator network, the last hidden layer of which is connected to n output heads h1, . . . , hn,
each of which consists of a single linear layer. The output uθi(t) of each hi is re‐parameterized to satisfy the ith initial
condition, giving the predicted solution ũi(t). We use the predicted solutions for all n initial conditions to construct
the “fake”LHS vector, which are passed to the discriminator, along with the “real”RHS data.

condition t(i)0 .

We then adjust the output uθi(t) of each head according to the same initial value re-parameterization

used previously.

ũi(t) = u
(i)
0 +

(
1− e

−
(
t−t

(i)
0

))
uθi(t) (4.1)

where u(i)0 = u(t)
∣∣
t=t

(i)
0

. This gives us predicted solutions ũ1(t), ũ2(t), . . . , ũn(t). The orig-

inal DEQGAN architecture yielded just a single solution, which we plugged into the differential

equation F to construct the “fake”LHS vector. To handle n solutions, we simply concatenate the

LHS vectors over all solutions, as shown in Equation 4.2.
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LHS =
[
F
(
t, ũ1(t), ũ

′
1(t), ũ

′′
1(t), . . .

)
,

F
(
t, ũ2(t), ũ

′
2(t), ũ

′′
2(t), . . .

)
,

. . .

F
(
t, ũn(t), ũ

′
n(t), ũ

′′
n(t), . . .

) ]
(4.2)

Without instance noise, theRHS will then be a vector of zeros with the same dimension as

Equation 4.2. From here, training proceeds in the same way as the original DEQGAN setup, with

the discriminator being trained to distinguish between theLHS andRHS and the generator aim-

ing to fool the discriminator.

By training the generator on multiple initial conditions at once, the “base” network is forced to

learn a representative basis for the differential equation, while each head learns a linear transforma-

tion from the output of the base to the solution corresponding to a particular initial condition. This

approach enables us to transfer the basis learned from the set of initial conditions Ib used for base

training to a second set of initial conditions It. The training procedures used to train the base and

perform transfer learning are defined more precisely in Algorithms 1 and 2, respectively.

The critical difference between these two algorithms is that while Algorithm 1 optimizes an entire

generator network, Algorithm 2 “freezes” the weights of the pre-trained generator (turns off their

gradient computations) and fine-tunes only the linear output heads. This makes transfer learning

much less computationally expensive than base training per iteration.
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Algorithm 1DEQGANBase Training
Input: Differential equation F , randomly-initialized generatorG and discriminatorD,
total iterationsN , number of base initial conditions n, domain I of initial conditions
Set Ib to be a list of n evenly spaced initial conditions in I
Add linear output heads h1, h2, . . . , hn to the last hidden layer ofG
for i = 1 toN do

Run DEQGAN training algorithm
end for
Remove h1, h2, . . . , hn fromG
Output: G

Algorithm 2DEQGANTransfer Learning
Input: Differential equation F , pre-trained generatorG, randomly-initialized discrimi-
natorD, total iterationsN , list ofm arbitrary initial conditions for transfer
It = {t(1)0 , t

(2)
0 , . . . , t

(m)
0 }

Turn off gradient computation for the weights ofG
Add linear output heads h1, h2, . . . , hm to the last hidden layer ofG
for i = 1 toN do

Run DEQGAN training algorithm
end for
Output: G

In order to learn a representative basis over the domain I of initial conditions that we would like

to solve for, Algorithm 1 trains DEQGAN on a set of evenly-spaced initial conditions Ib spanning

this domain. Algorithm 2, however, allows us to transfer to an arbitrary set of initial conditions

It ∈ I . By using the pre-trained generator output of Algorithm 1 as an input to Algorithm 2, we

are able to generate solutions for It more efficiently than for Ib. Finally, Algorithm 2 outputs a fine-

tuned multi-head generator that we can use to produce solutions for all initial conditions It in a

single forward pass.
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4.2 Branched Flows

In the experiments that follow, we use the Hamilton system (HAM) of ODEs, which we introduced

in Chapter 3 (see Section 3.1.1 for details) and include below for reference.



ẋ(t) = px

ẏ(t) = py

ṗx(t) = −Vx

ṗy(t) = −Vy

(4.3)

In our experiments, we set x(t)
∣∣
t=0

= 0, px(t)
∣∣
t=0

= 1, py(t)
∣∣
t=0

= 0, and solve the system

for t ∈ [0, 1]. Vx and Vy are the derivatives of the potential V with respect to x and y, and we

construct V by summing ten bivariate Gaussians with means randomly sampled [µx, µy] ∈ [0, 1]×

[0, 1], as described in Section 3.1.1. To demonstrate transfer learning, we vary y(t)
∣∣
t=0

= y0, the

initial vertical position of the particle, in [0, 1]. Therefore, this interval defines our domain of initial

conditions I .

These equations can be used to model a phenomenon in wave mechanics known as “branched

flow,” whereby waves passing through a potential are scattered in different directions, forming tree-

like patterns. Consider a series of particles moving through a potential V from different vertical

starting positions. In Figure 4.2, we illustrate this effect by generating solutions to the system at 100

equally-spaced vertical starting positions y0 using SciPy’s solve_ivp numerical solver. At around

(x, y) ∈ [0.5, 0.4], we see that the rays self-intersect, forming what is known as a “caustic.”
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Figure 4.2: Solutions to the Hamilton system obtained by a numerical solver. The red background indicates the potential
obtained by summing ten random bivariate Gaussians. The blue lines plot x(t) vs. y(t) for 100 evenly‐spaced initial
conditions in [0, 1], which correspond to ray trajectories through the potential starting from 100 different vertical
positions.

4.3 Experimental Results

In this section, we present the results obtained by DEQGAN on a variety of transfer learning tasks

involving the Hamilton equations. First, we discuss the training of the base generator. Then, we

utilize the pre-trained base for three different types of transfer: single initial condition transfer, mul-

tiple initial condition transfer, and potential transfer.

4.3.1 Base Training

Effective transfer learning necessitates an accurate and expressive base generator. Therefore, it is

important to choose a large enough number of initial conditions n to train the base in Algorithm 1.
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Figure 4.3: Visualization of multi‐head DEQGAN base training for the Hamilton system over 11 evenly‐spaced initial
conditions Ib = [0, 0.1, . . . , 1.0]. The left‐most figure plots the mean squared error (averaged over all Ib) vs. itera‐
tion. To the right, we plot the value of the generator (G) and discriminator (D) losses at each iteration. The right‐most
figure plots theL2 of the equation residuals (theLHS) vs. iteration.

In our experiments, we found that while DEQGANwas able to generate accurate predictions up to

around n = 11, solution quality deteriorated beyond this point. We believe that this is because the

dimensionality of the “fake” data vector (Equation 4.2) increases with n, presenting an increasingly

difficult classification task for the discriminator. To balance accuracy with expressivity, we chose

n = 11 and trained the the multi-head DEQGANmodel on evenly-spaced initial conditions Ib =

{0, 0.1, . . . , 1.0}.

Figure 4.3 visualizes the results of this training procedure. In the leftmost plot, the mean squared

error, which is calculated as an average over all Ib, converges to∼10−9 after around 1000 iterations.

To the right, we see that the generator and discriminator losses reach convergence relatively quickly,

which is indicative of a good training run. These results suggest successful training of the base gener-

ator. In the sections that follow, we investigate how this base can be transferred to other problems.
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(a)Original DEQGAN training (b) Single IC transfer

Figure 4.4: Predicted solutions obtained by the original DEQGAN model trained from scratch (left) and by leveraging
transfer learning with the pre‐trained base generator (right). In both procedures, we solve one initial condition at a time
to obtain solutions for 100 evenly‐spaced initial conditions in [0, 1].

4.3.2 Single Initial Condition Transfer

Having completed base training, we are now ready for transfer learning. In this section, we transfer

to one new initial condition during each training run, i.e.,m = 1 and It = {y0}. As indicated

in Algorithm 2, this requires replacing the 11 heads used to train the base with a single randomly

initialized head, which will be fine-tuned to solve the equation for y(t)
∣∣
t=0

= y0.

We repeat this procedure for the same 100 evenly-spaced initial conditions in [0, 1] shown in

Figure 4.2. For comparison, we also generate solutions for these 100 initial conditions using the

original (single-headed) DEQGAN architecture, which does not leverage a pre-trained base. In

Figure 4.4, we plot the ray trajectories corresponding to the solutions generated by each method.

Figure 4.4a plots the solutions obtained by training the original version of DEQGAN from

scratch. While the majority of trajectories match the numerical solutions shown in Figure 4.2, we

see that several veer significantly off course. This is an indication of DEQGAN’s sensitivity to hy-
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perparameters. In particular, the model was trained using the same hyperparameters for all initial

conditions but was not always able to produce accurate solutions.

In Figure 4.4b, however, we see that that transferring the pre-trained base to the same initial con-

ditions eliminates this issue entirely. This comparison reveals that transfer learning is able to im-

prove the robustness of our method significantly. Further, because transfer learning requires only

fine-tuning linear heads, it is also more computationally efficient than training DEQGAN from

scratch. In Table 4.1, we compare the average time (in seconds) taken per iteration of training DEQ-

GAN from scratch against DEQGANwith transfer learning.

Time per Iteration (seconds)

Training from scratch 0.0211
Transfer learning 0.0172

Table 4.1: Average time taken per iteration by training DEQGAN from scratch vs. DEQGAN with transfer learning. Each
training procedure involves solving the Hamilton system for one initial condition at a time.

4.3.3 Multiple Initial Condition Transfer

In the previous section, we transferred a base trained on 11 initial conditions to one new condition

at a time. In this section, we leverage the multi-head DEQGAN architecture to transfer to multiple

initial conditions at once, i.e.,m > 1. As we found for base training, however, adding too many

heads to the model caused solution accuracy to deteriorate.

In Figure 4.5, we plot the ray trajectories for the solutions produced by DEQGANwith n = 11

heads during base training andm = 11 heads during transfer. As shown in Figure 4.5a, the base
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(a) Base training (b)Multiple IC transfer

Figure 4.5: Ray trajectories learned by DEQGAN after base training and multiple initial condition transfer. The base was
trained on 11 evenly spaced initial conditions in [0, 1], while transfer learning was used to obtain solutions to 11 new
initial conditions sampled uniformly at random in the same interval. The dashed black lines represent the ground‐truth
solutions obtained by SciPy’s numerical solver, while the blue and green lines show the solutions obtained during base
training and transfer learning, respectively.

is trained on the same evenly-spaced initial conditions Ib = {0, 0.1, . . . 1.0} used previously. For

transfer learning, we uniformly at random sample new initial conditions It ∈ [0, 1]. For both

training procedures, we see that the predicted solutions are indistinguishable from the “ground-

truth” numerical solutions, which are indicated in dashed black lines.

For a clearer comparison between base training and transfer learning, Figure 4.6 plots the mean

squared error averaged over all initial conditions vs. iteration for each training procedure. Notably,

transfer learning not only appears to converge slightly more rapidly than base training, but also

reaches a lower final MSE of∼10−10. This suggests that the linear transformations added to the

pre-trained base enable DEQGAN to converge to more accurate solutions.

As discussed in the previous section, fine-tuning the linear heads is also less computationally

expensive than training the base per iteration. Therefore, transfer learning enables DEQGAN to

obtain solutions to multiple initial conditions at once both more efficiently andmore accurately in
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comparison to base training.

It should be noted, however, that there is an apparent limit to the number of initial conditions

for which the multi-head DEQGANmodel can generate accurate solutions. In our experiments,

we found that the mean squared error converged to around∼10−5 for 15 initial conditions and

∼10−4 for 20 initial conditions. Transferring to 11 new initial conditions, however, consistently

yielded accurate results.

Figure 4.6: Mean squared errors vs. iteration during base training (red) and multiple initial condition transfer (blue).
For each training procedure, the mean squared errors are calculated against the ground‐truth numerical solutions and
averaged over all initial conditions.

4.3.4 Potential Transfer

So far, we have demonstrated how transfer learning can be used to more efficiently compute solu-

tions for a new set of initial conditions with the same potential V . In this section, we show that this

procedure can be used to transfer from one potential to another while keeping the initial conditions

unchanged.

More specifically, we randomly re-sample ten bivariate Gaussian means [µx, µy] ∈ [0, 1] × [0, 1]
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(a) Base training (b) Potential transfer

Figure 4.7: Ray trajectories learned by DEQGAN after base training and potential transfer. The base was trained on
11 evenly spaced initial conditions in [0, 1] with potential Vb, while transfer learning was used to obtain solutions to
the same initial conditions with potential Vt. The dashed black lines represent the ground‐truth solutions obtained by
SciPy’s numerical solver, while the blue and green lines show the solutions obtained during base training and transfer
learning, respectively.

to construct a new potential

Vt = − A

2πσ2

10∑
i=1

exp

(
− 1

2σ2
||x(t)− µi||22

)
(4.4)

whereµi = [µx, µy]
T . The potential used during base training, which we denote Vb, was con-

structed with scaling factorA = 0.1 and standard deviation σ = 0.1, which define the statistical

properties of the potential. Therefore, the basis learned by our pre-trained base is also defined by

these values ofA and σ, implying that we should build the transfer potential Vt using the same val-

ues. If we changed these values, we would be attempting to transfer the basis learned by the base

generator to a system with different statistical properties.

To prevent this transfer learning task from becoming too difficult, we solve the system for the

same initial conditions used to train the base. The training procedure is equivalent to that described

in Algorithm 2, but uses the new potential Vt to define the Hamilton system and sets It = Ib.
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The ray trajectories obtained over Vt by DEQGAN are illustrated in Figure 4.7b. For compar-

ison, we include the trajectories discovered over Vb during base training in Figure 4.7a. While the

initial conditions in these two plots are the same, the new potential deflects the rays in different

ways, producing different trajectories. Nonetheless, the multi-head DEQGANmodel is able to dis-

cover solutions that are indistinguishable from those obtained using a numerical solver, which are

indicated by dashed black lines.

In Figure 4.8, we visualize the mean squared errors averaged over all initial conditions for base

training and transfer learning. Although transfer learning converges more quickly, we notice that it

reaches a slightly less accurate local optimum, with mean squared error∼10−8. This indicates that

potential transfer may be a more challenging task than initial condition transfer. Nonetheless, these

results indicate that we are able to perform transfer learning from one potential to another and that

our pre-trained base was, indeed, able to learn the underlying statistics of the system.

Figure 4.8: Mean squared errors vs. iteration during base training (red) and potential transfer (blue). For each training
procedure, the mean squared error is calculated against the ground‐truth numerical solutions and averaged over all
initial conditions.
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People will forget what you said, people will forget what

you did, but people will never forget how you made them

feel.

Maya Angelou

5
Discussion

The primary objective of this work was to improve the robustness and utility of DEQGAN,

a method proposed by Randle et al. 45 that uses a generative adversarial network to solve differential

equations in a fully unsupervised manner, thereby removing the need for a pre-specified loss func-

tion. While the original version of DEQGAN showed promising results and outperformed classical
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neural networks in terms of predictive accuracy on a range of differential equations, is was compar-

atively unstable to train and sensitive to hyperparameters. For example, changing the model weight

initializations could produce highly variable results.

We have addressed this issue using a variety of approaches. First, we proposed adding instance

noise to the “real” and “fake” data samples, which encourages their distributions to overlap and im-

proved convergence. Second, we employed a residual monitoring technique, which leverages the

information contained within theLHS vector of residuals to terminate poor-performing runs early.

Finally, we proposed a multi-head DEQGAN architecture, which allows us to train a base genera-

tor on multiple initial conditions at once. By leveraging a pre-trained base for transfer learning, we

found that DEQGAN training not only became more stable and less computationally expensive,

but often also improved accuracy in comparison to training DEQGAN from scratch.

Transfer learning enabled DEQGAN to learn solutions to new initial conditions and even dif-

ferent parameterizations of a given system using a single set of hyperparameters. In particular, the

hyperparameters used to train the base generator also worked well on our transfer learning tasks.

Nonetheless, those hyperparameters still required tuning to obtain, and using default hyperparame-

ter values would likely have yielded significantly worse results.

The sensitivity of generative adversarial networks to hyperparameter settings is an open research

problem and remains the biggest bottleneck of our approach. While DEQGAN consistently out-

performs classical unsupervised neural networks that useL2, L1 and Huber loss functions, these

classical networks are usually able to obtain accurate solutions with little to no hyperparameter tun-

ing. Indeed, as we found in Chapter 3, the solution accuracies obtained by classical neural networks
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showed significantly less variability across randomized trials than those obtained by DEQGAN. Fur-

ther, we found that hyperparameter tuning the classical methods did not significantly improve their

results.

Despite these limitations, we believe that the results presented in this thesis indicate that DEQ-

GAN could offer advantages over other approaches to solving differential equations in real world

scenarios. In particular, if the computation required to tune hyperparameters is available, DEQ-

GAN is likely to yield solution accuracies that beat classical neural networks and that are competi-

tive with popular numerical solvers. But unlike numerical methods, DEQGAN produces solutions

that are in closed-form, meaning that we can obtain solutions over arbitrary grids with a single for-

ward pass of a trained generator network.

At the same time, we note that solving differential equations with unsupervised neural networks

is a relatively new line of research and lacks the well established theory enjoyed by numerical ap-

proaches. Importantly, neural networks, especially generative adversarial networks, provide no guar-

antees of training stability or convergence. In a real world scenario, therefore, they should always be

used alongside numerical solvers, particularly if they are being deployed in safety critical applications

in science and engineering.
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6
Conclusion

In this thesis, we have explored various methods for improving the robustness of DEQGAN,

a GAN-based method for solving differential equations in a fully unsupervised fashion. We found

that adding instance noise to the “real” and “fake” data samples in a manner that depends on the

generator and discriminator losses is an effective method for adaptively improving training conver-
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gence. Further, we showed how the information contained within the equation residuals can be

leveraged to detect and terminate poor-performing runs early. By conducting an ablation study, we

demonstrated the added robustness offered by these approaches.

Presenting results on a suite of ODEs and PDEs, including the non-linear Burgers’, Allen-Cahn,

Hamilton, and modified Eintesin’s gravity equations, we showed that these improvements enable

DEQGAN to obtain reliable results on challenging problems and outperform classical unsupervised

neural networks that useL2, L1 and Huber loss functions, often by multiple order of magnitude.

These experiments also revealed that the loss function used to optimize classical neural networks

can have a significant impact on the quality of the solution and highlighted the advantage of using

DEQGAN to simply “learn the loss function” based on the equation residuals.

Despite these impressive results, they still required extensive hyperparameter tuning to attain,

making DEQGANmore computationally espensive than alternative unsupervised neural networks

that use feed-forward architectures. In light of this, we proposed a multi-head DEQGANmodel

that solves a given system for multiple initial conditions at once. This allowed us to obtain a pre-

trained base generator that can be transferred to a new set of initial conditions or a different pa-

rameterization of the system. We found that transfer learning improved not only computational

efficiency but also training stability and, in some cases, solution accuracy.

While neural networks generally remain more computationally expensive than numerical meth-

ods, our results point to the efficacy of transferring the inductive biases learned on one differential

equation to a different parameterization of that equation, or potentially to new systems entirely. To

make unsupervised neural networks more competitive with traditional methods, future work could
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explore how transfer learning can be harnessed to efficiently compute solutions for entire classes of

differential equations.

In addition, it may be fruitful to explore alternative methods for sampling points during train-

ing. While the experiments conducted in this thesis utilized only fixed-grid and noisy-grid sampling

schemes, it may be more efficient to concentrate sampling in high residual areas of the problem do-

main. Some of these methods might be based on the gradient of the residuals, while others could

adopt a probabilistic re-sampling approach.

More broadly, we advocate for future work on solving differential equations with deep learn-

ing methods to focus on efficiency. We hope that the ideas presented in this thesis inspire other

researchers to develop neural network solvers that are more intelligent and place a smaller strain on

computational resources.
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A
Appendix

A.1 Training Details

In Tables A.1 – A.12, we specify the problem domains and hyperparameters used for the full suite of

twelve differential equations that we have solved with DEQGAN.We used optimization algorithms

from Ray-Tune33 to tune hyperparameters.
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Hyperparameter Value

Num. Iterations 1200
Num. Grid Points 100
SamplingMethod Perturb
Grid Boundary [0, 10]
Instance Noise True
GUnits 40
G Layers 2
D Units 20
D Layers 4
G Learning Rate 0.09465492
D Learning Rate 0.01221551
Learning Rate Decay StepLR(step_size= 3, γ = 0.95003024)
GOptimizer Adam(β1 = 0.49137950, β2 = 0.31989269)
DOptimizer Adam(β1 = 0.54223041, β2 = 0.26406118)
GActivations tanh
D Activations tanh
GAN Formulation Cross-Entropy
GANRegularization Spectral Normalization
G Skip Connections True
D Skip Connections True

Table A.1: DEQGAN Training Details: Exponential Decay (EXP)
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Hyperparameter Value

Num. Iterations 12000
Num. Grid Points 400
SamplingMethod Perturb
Grid Boundary [0, 2π]
Instance Noise True
GUnits 40
G Layers 3
D Units 50
D Layers 3
G Learning Rate 0.00596461
D Learning Rate 0.00048861
Learning Rate Decay StepLR(step_size= 19, γ = 0.97862221)
GOptimizer Adam(β1 = 0.36317042, β2 = 0.75224866)
DOptimizer Adam(β1 = 0.58413382, β2 = 0.45382877)
GActivations tanh
D Activations tanh
GAN Formulation Cross-Entropy
GANRegularization Spectral Normalization
G Skip Connections True
D Skip Connections True

Table A.2: DEQGAN Training Details: Simple Harmonic Oscillator (SHO)
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Hyperparameter Value

Num. Iterations 12000
Num. Grid Points 400
SamplingMethod Perturb
Grid Boundary [0, 4π]
Instance Noise True
GUnits 40
G Layers 4
D Units 20
D Layers 2
G Learning Rate 0.01064872
D Learning Rate 0.02104329
Learning Rate Decay StepLR(step_size= 15, γ = 0.98037812)
GOptimizer Adam(β1 = 0.22544921, β2 = 0.33148318)
DOptimizer Adam(β1 = 0.36273349, β2 = 0.55130697)
GActivations tanh
D Activations tanh
GAN Formulation Cross-Entropy
GANRegularization Spectral Normalization
G Skip Connections True
D Skip Connections True

Table A.3: DEQGAN Training Details: Non‐Linear Oscillator (NLO)
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Hyperparameter Value

Num. Iterations 70000
Num. Grid Points 800
SamplingMethod Perturb
Grid Boundary [0, 2π]
Instance Noise True
GUnits 40
G Layers 5
D Units 40
D Layers 2
G Learning Rate 0.00421514
D Learning Rate 0.08228618
Learning Rate Decay StepLR(step_size= 16, γ = 0.99756482)
GOptimizer Adam(β1 = 0.60325852, β2 = 0.61447363)
DOptimizer Adam(β1 = 0.41218949, β2 = 0.11003992)
GActivations tanh
D Activations tanh
GAN Formulation Cross-Entropy
GANRegularization Spectral Normalization
G Skip Connections True
D Skip Connections True

Table A.4: DEQGAN Training Details: Coupled Oscillators (COO)
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Hyperparameter Value

Num. Iterations 20000
Num. Grid Points 800
SamplingMethod Perturb
Grid Boundary [0, 10]
Instance Noise True
GUnits 50
G Layers 4
D Units 50
D Layers 4
G Learning Rate 0.00629315
D Learning Rate 0.01239617
Learning Rate Decay StepLR(step_size= 11, γ = 0.99275622)
GOptimizer Adam(β1 = 0.27854976, β2 = 0.77766866)
DOptimizer Adam(β1 = 0.01864329, β2 = 0.908877)
GActivations tanh
D Activations tanh
GAN Formulation Cross-Entropy
GANRegularization Spectral Normalization
G Skip Connections True
D Skip Connections True

Table A.5: DEQGAN Training Details: SIR Disease Model (SIR)
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Hyperparameter Value

Num. Iterations 12500
Num. Grid Points 400
SamplingMethod Perturb
Grid Boundary [0, 1]
Instance Noise True
GUnits 40
G Layers 5
D Units 50
D Layers 2
G Learning Rate 0.01791762
D Learning Rate 0.01959963
Learning Rate Decay StepLR(step_size= 13, γ = 0.98551429)
GOptimizer Adam(β1 = 0.25259308, β2 = 0.93144190)
DOptimizer Adam(β1 = 0.10584021, β2 = 0.86945859)
GActivations tanh
D Activations tanh
GAN Formulation Cross-Entropy
GANRegularization Spectral Normalization
G Skip Connections True
D Skip Connections True

Table A.6: DEQGAN Training Details: Hamilton Equations (HAM)
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Hyperparameter Value

Num. Iterations 50000
Num. Grid Points 1000
SamplingMethod Perturb
Grid Boundary [0, 10]
Instance Noise True
GUnits 40
G Layers 4
D Units 30
D Layers 2
G Learning Rate 0.01177194
D Learning Rate 0.00662024
Learning Rate Decay StepLR(step_size= 17, γ = 0.99636960)
GOptimizer Adam(β1 = 0.20296515, β2 = 0.97508494)
DOptimizer Adam(β1 = 0.15440781, β2 = 0.79705852)
GActivations tanh
D Activations tanh
GAN Formulation Cross-Entropy
GANRegularization Spectral Normalization
G Skip Connections True
D Skip Connections True

Table A.7: DEQGAN Training Details: Modified Einstein’s Gravity Equations (EIN)
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Hyperparameter Value

Num. Iterations 3000
Num. Grid Points 32× 32
SamplingMethod Perturb
Grid Boundary [0, 1]× [0, 1]
Instance Noise True
GUnits 50
G Layers 4
D Units 30
D Layers 2
G Learning Rate 0.01908663
D Learning Rate 0.02154824
Learning Rate Decay StepLR(step_size= 3, γ = 0.95727502)
GOptimizer Adam(β1 = 0.13931808, β2 = 0.36966975)
DOptimizer Adam(β1 = 0.74574617, β2 = 0.7590883)
GActivations tanh
D Activations tanh
GAN Formulation Cross-Entropy
GANRegularization Spectral Normalization
G Skip Connections True
D Skip Connections True

Table A.8: DEQGAN Training Details: Poisson Equation (POS)
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Hyperparameter Value

Num. Iterations 2000
Num. Grid Points 32× 32
SamplingMethod Perturb
Grid Boundary [0, 1]× [0, 0.2]
Instance Noise True
GUnits 40
G Layers 4
D Units 30
D Layers 2
G Learning Rate 0.01086166
D Learning Rate 0.00195769
Learning Rate Decay StepLR(step_size= 10, γ = 0.95003910)
GOptimizer Adam(β1 = 0.23067650, β2 = 0.65763986)
DOptimizer Adam(β1 = 0.12032453, β2 = 0.25102168)
GActivations tanh
D Activations tanh
GAN Formulation Cross-Entropy
GANRegularization Spectral Normalization
G Skip Connections True
D Skip Connections True

Table A.9: DEQGAN Training Details: Heat Equation (HEA)
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Hyperparameter Value

Num. Iterations 5000
Num. Grid Points 32× 32
SamplingMethod Perturb
Grid Boundary [0, 1]× [0, 1]
Instance Noise True
GUnits 50
G Layers 4
D Units 50
D Layers 2
G Learning Rate 0.01212438
D Learning Rate 0.08844106
Learning Rate Decay StepLR(step_size= 18, γ = 0.95336880)
GOptimizer Adam(β1 = 0.29551987, β2 = 0.35822444)
DOptimizer Adam(β1 = 0.57517950, β2 = 0.13306347)
GActivations tanh
D Activations tanh
GAN Formulation Cross-Entropy
GANRegularization Spectral Normalization
G Skip Connections True
D Skip Connections True

Table A.10: DEQGAN Training Details: Wave Equation (WAV)
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Hyperparameter Value

Num. Iterations 3000
Num. Grid Points 64× 64
SamplingMethod Perturb
Grid Boundary [−5, 5]× [0, 2.5]
Instance Noise True
GUnits 50
G Layers 3
D Units 20
D Layers 5
G Learning Rate 0.01274294
D Learning Rate 0.00542646
Learning Rate Decay StepLR(step_size= 20, γ = 0.95484413)
GOptimizer Adam(β1 = 0.18525066, β2 = 0.59412178)
DOptimizer Adam(β1 = 0.09374523, β2 = 0.18467156)
GActivations tanh
D Activations tanh
GAN Formulation Cross-Entropy
GANRegularization Spectral Normalization
G Skip Connections True
D Skip Connections True

Table A.11: DEQGAN Training Details: Burgers’ Equation (BUR)
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Hyperparameter Value

Num. Iterations 10000
Num. Grid Points 64× 64
SamplingMethod Perturb
Grid Boundary [0, 2π]× [0, 5]
Instance Noise True
GUnits 50
G Layers 2
D Units 30
D Layers 2
G Learning Rate 0.02075779
D Learning Rate 0.01349295
Learning Rate Decay StepLR(step_size= 15, γ = 0.98398755)
GOptimizer Adam(β1 = 0.43650750, β2 = 0.91051010)
DOptimizer Adam(β1 = 0.48427734, β2 = 0.29753110)
LHS Reweighing λ = 1.20162002
GActivations tanh
D Activations tanh
GAN Formulation Cross-Entropy
GANRegularization Spectral Normalization
G Skip Connections True
D Skip Connections True

Table A.12: DEQGAN Training Details: Allen‐Cahn Equation (ACA)
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A.2 Classical Neural NetworkHyperparameter Tuning

Table A.13 presents the results obtained by tuning hyperparameters for the classical unsupervised

neural network method withL1,L2 and Huber loss functions.

Mean Squared Error

Key L1 L2 Huber DEQGAN Traditional

EXP 1 · 10−4 4 · 10−8 2 · 10−8 3 · 10−16 2 · 10−14 (RK4)
SHO 1 · 10−5 1 · 10−9 5 · 10−10 4 · 10−13 1 · 10−11 (RK4)
NLO 1 · 10−4 3 · 10−10 1 · 10−10 1 · 10−12 4 · 10−11 (RK4)
COO 5 · 10−1 2 · 10−7 3 · 10−7 1 · 10−8 2 · 10−9 (RK4)
SIR 9 · 10−6 1 · 10−10 1 · 10−10 1 · 10−10 5 · 10−13 (RK4)
HAM 4 · 10−5 1 · 10−8 6 · 10−9 1 · 10−10 7 · 10−14 (RK4)
EIN 5 · 10−2 2 · 10−2 1 · 10−2 4 · 10−4 4 · 10−7 (RK4)
POS 9 · 10−6 1 · 10−10 1 · 10−10 4 · 10−13 3 · 10−10 (FD)
HEA 1 · 10−4 4 · 10−8 2 · 10−8 6 · 10−10 4 · 10−7 (FD)
WAV 4 · 10−4 6 · 10−7 2 · 10−7 1 · 10−8 7 · 10−5 (FD)
BUR 1 · 10−3 1 · 10−4 9 · 10−5 4 · 10−6 1 · 10−3 (FD)
ACA 5 · 10−2 1 · 10−2 3 · 10−3 5 · 10−3 2 · 10−4 (FD)

Table A.13: Experimental Results With Classical Hyperparameter Tuning

A.3 DEQGAN vs. Classical Neural Networks: Previous Experiments

Figure A.1 compares the DEQGAN training results with those obtained by the classical neural

network methods on the six differential equations previously studied by Randle et al. 45 .
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(a) Exponential Decay (EXP) (b) Simple Harmonic Oscillator (SHO)

(c) Non‐Linear Oscillator (NLO) (d) Coupled Oscillators (COO)

(e) SIR Disease Model (SIR) (f) Poisson Equation (POS)

Figure A.1: Mean squared errors vs. iteration for DEQGAN,L2,L1 and Huber loss for various equations. We perform
ten randomized trials and plot the median (bold) and (25, 75) percentile range (shaded). We smooth the values using a
simple moving average with window size 50.
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