
CS181 Practical: Classifying the Sounds of NYC

Blake Bullwinkel, Mark Penrod

April 9, 2021

1 Part A: Feature Engineering

1.1 Approach

The SONYC audio data is provided in a high-dimensional format, with 44100 features for the
amplitude data and a (128×87) dimensional feature space for the 2D Mel spectrogram data. Given
that the dimensionality of our data is larger than the number of observations in our training set,
we use PCA to project the data into a lower dimension, thereby minimizing the risk of overfitting.

We normalized the data by fitting Min-Max scalers to the amplitude and spectrogram data and
performed PCA on the training data, keeping the first 500 principal components. For the amplitude
data, these components represent the 500 directions along which the amplitude varies the most,
while the principal components for the (flattened) spectrogram data represent the 500 directions
along which 128 audio-related features computed from the amplitudes show the most variance.

Finally, we trained logistic regression models on the PCA transformed training data and cal-
culated classification accuracies on both the train and test sets. Given our multi-class setting, we
opted to use multinomial logistic regression, which uses a softmax function instead of the familiar
sigmoid used in binary classification. We made classification predictions by finding the argmax
of the normalized probability vector produced by softmax, and trained the model weights using
cross-entropy loss. Table 1 summarizes the overall train and test accuracies for a baseline and
three logistic regression models across the two data types, amplitude and Mel spectrogram. See
Appendix 5.1 for bar plots depicting the class accuracies for each model and data type.

1.2 Results

Baseline: Näıve Model
Model 1: Logistic Regression
Model 2: Logistic + L2 Regularization
Model 3: Logistic + L2 + Class weighting

Table 1: Overall classification accuracies (%) for logistic regression models

Baseline Model 1 Model 2 Model 3
Train Test Train Test Train Test Train Test

Amplitude 11.6 11.0 41.1 18.3 40.7 20.3 40.2 19.8
Mel Spectrogram 11.6 11.0 80.4 33.5 53.6 38.2 54.1 39.2

1



1.3 Discussion

For our baseline, we built a näıve model which randomly classified the data based on the relative
frequency of each class in the data set. As reflected in Table 1, this approach consistently yielded
the lowest classification accuracy. Next, we used an un-regularized logistic regression, which pro-
duced much higher accuracy scores on the training data than the test data (especially for the
Mel spectrogram data). In order to mitigate overfitting, we introduced L2 regularization, which
penalizes large coefficient values according to a squared magnitude. As expected, regularization
produced a noticeable drop in train accuracy and an increase in test accuracy, particularly for
the Mel spectrogram data. Finally, we note that the distribution of noise types represented in the
training data is highly imbalanced. To address this, we introduced class weights to the model based
on class frequencies. As shown in Figure 1 (Appendix 5.1), this noticeably improved classification
accuracies for sounds labelled ”car horn” and ”gun shot,” both of which are minority categories.

Overall, the models built using the Mel spectrogram data outperformed those derived from
the amplitude data. We hypothesize a few reasons for this difference. First, the Mel spectrogram
data is a pre-processed version of the amplitude data with information added in the form of 128
audio-related features. Second, an analysis of the variance explained by the principal components
derived from the two data sets revealed that the first 500 Mel spectrogram PCs captured 92.6% of
the variation, while the first 500 amplitude PCs captured only 60.1%. These aspects of the Mel
spectrogram make it a richer data set that make higher classification accuracies more attainable.

2 Part B: Model Classes

2.1 Approach

In this section, we experimented with kNN, random forest, and feed-forward neural network (FFNN)
models in order to see whether nonlinear models might improve classification accuracies in com-
parison to the logistic regressions discussed above.

For the kNN model, we used k = 3 for the amplitude data and k = 5 for the Mel spectrogram
data after trying out a few values and selecting those which achieved the best test accuracies.
For the random forest, we trained a model with 100 decision tree estimators, a maximum tree
depth of 20, and the minimum number of samples required to split a node equal to 1. Finally, we
built a feed-forward neural network with three hidden layers and an output layer with ten nodes
corresponding to the ten classes. We also added two dropout layers to minimize overfitting and
trained the network using an Adam optimizer with categorical cross-entropy loss. See Appendix
5.2 for the exact model architecture used and Appendix 5.3 for the per class accuracies achieved
by each model.

2.2 Results

Table 2: Overall classification accuracies (%) for nonlinear models

KNN Random Forest FFNN
Train Test Train Test Train Test

Amplitude 46.7 18.1 46.7 18.1 98.7 24.5
Mel Spectrogram 74.3 36.5 74.3 36.5 88.6 46.5

2



2.3 Discussion

The nonlinear models had mixed results on the amplitude and Mel spectrogram data. First, both
the kNN and random forest classifiers performed about as well on the test data as the un-regularized
logistic regression model from Part A. Surprisingly, these two models had the same overall train
and test accuracies for both the amplitude and Mel spectrogram data using hyperparameters that
led to reasonable performance.

Although kNN and random forest are both non-linear models, our results suggest that they may
still not be flexible enough to learn the complexity of the amplitude and Mel spectrogram data.
As shown in Table 2, the feed-forward neural network with dropout achieved significantly higher
overall train and test accuracies on both data sets. This suggests that the size and flexibility of
a neural network may be necessary for accurate predictions using this sound data. However, we
also notice that the discrepancy between the neural network train and test accuracies is very large,
indicating that it is prone to overfitting, even with dropout.

3 Part C: Hyperparameter Tuning and Validation

3.1 Approach

To improve upon the relatively poor performance of the kNN and random forest classifiers discussed
in the previous section, we performed hyperparameter tuning on the number of neighbors for kNN
using a linear search (k = 1, 2, 3, 4, 5, 6) and simultaneously on maximum tree depth and minimum
number of samples required to split a node for random forest using a grid search. For each value
or pair of values, we recorded the overall test accuracy achieved in order to determine the optimal
hyperparameter settings. The heatmaps in Appendix 5.4 help visualize the results of grid search
on both the amplitude and Mel spectrogram data for the random forest classifier.

3.2 Results

Table 3: Best test accuracies for kNN and random forest with hyperparameter tuning

KNN Random Forest

Amplitude 20.57 27.36
Mel Spectrogram 36.87 41.92

3.3 Discussion

As shown in Table 3, tuning the number of neighbors only marginally improved the overall test ac-
curacies for kNN. This suggests that kNN might be an overly simplistic model given the complexity
of the audio data. On the other hand, tuning the two random forest hyperparameters achieved
significantly better results on both data sets than before. In fact, the test accuracy achieved by
the optimized random forest on the amplitude data is much higher even than that achieved by the
feed-forward neural network. Contrary to what our results from part B may have suggested, this
shows that given the right hyperparameters, a random forest is, in fact, flexible enough to capture
the complexity of the data and make accurate predictions. However, neural networks may still be a
preferable option given their ability to achieve high accuracies without any hyperparameter tuning.

3



4 Part D: Long Short-Term Memory

Note: Please see Part A for our handling of class imbalance using class weighting.

4.1 Approach

As a bonus, we implemented a Long Short-Term Memory (LSTM), a type of Recurrent Neural
Network (RNN) architecture. RNNs are a class of neural networks suitable for time series data
because they introduce concepts of memory and context history. RNNs achieve this by carrying
a set of weights known as a hidden state that is propagated throughout the network and updated
at each time step. LSTMs expand and improve upon the basic RNN by introducing gates, which
support skip connections (helping to mitigate the vanishing/exploding gradient problem) and allow
certain inputs to be weighted more heavily (allowing the network to forget irrelevant information).
Notably, we applied the LSTM bidirectionally, which allows the network to learn patterns based
on both past and future information in order to make better predictions.

4.2 Results

Table 4: Final classification accuracies (%) for LSTM

Train Validation Test

Mel Spectrogram 84.69 73.27 47.75

See Appendix 5.5 for visualization of model training in terms of accuracy and loss

4.3 Discussion

Given the time-series nature of audio data, LSTMs are a natural choice for a classification model.
In general, LSTM models are designed to perform a feature analysis on the input data and pass
those features through a series of dense layers, which then execute the classification task. This
approach is analogous to that commonly implemented in CNNs. We tested several different archi-
tectures, including stacking multiple LSTM layers, varying the size and number of dense layers,
and incorporating regularization with dropout layers, which introduced sparsity into the network
by probabilistically ”dropping out” nodes in the network during training. The final architecture is
detailed in Appendix 5.6.

Because models trained on the the Mel spectrogram data consistently outperformed those
trained with the amplitude data, we decided to train our LSTM on the former. As seen in Table 4,
the LSTM achieved a noticable increase in test accuracy compared to previous models, suggesting
that either the model architecture or the added complexity improved predictions. Surprisingly, the
final validation accuracy and the test accuracy differed quite a bit. Given that validation sets are
used during model training to estimate performance on unseen data, it was unexpected to find that
validation accuracies were around 25% higher than test accuracies, regardless of the architecture
and hyperparameter values. Indeed, we would only expect to see such a large discrepancy if the test
data were substantially different from the training data in their class representation or distribution
of features. If this were the case, we would be severely limited in our ability to achieve high test
accuracies, but a more thorough analysis of the test data is required to make this determination.

4



5 Appendix

5.1 Logistic Regression Class Accuracies

Figure 1: Class accuracies for each model and data type in Part A

5.2 FFNN Architecture and Hyperparameters

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

dense (Dense) (None, 500) 250500

_________________________________________________________________

dropout (Dropout) (None, 500) 0

_________________________________________________________________

dense_1 (Dense) (None, 300) 150300

_________________________________________________________________

dropout_1 (Dropout) (None, 300) 0

_________________________________________________________________

dense_2 (Dense) (None, 100) 30100

_________________________________________________________________

dense_3 (Dense) (None, 10) 1010

=================================================================

Total params: 431,910

Trainable params: 431,910

Non-trainable params: 0

_________________________________________________________________

5



5.3 Nonlinear Model Class Accuracies

Figure 2: Class accuracies for each model and data type in Part B

5.4 Hyperparameter grid search heatmaps

Figure 3: Heatmaps showing the test accuracies achieved using grid search on random forest hy-
perparameters

6



5.5 LSTM Training Results

Figure 4: Plots showing loss and accuracy during LSTM training

5.6 LSTM Architecture and Hyperparameters

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

bidirectional (Bidirectional (None, 128) 77824

_________________________________________________________________

dense (Dense) (None, 256) 33024

_________________________________________________________________

dropout (Dropout) (None, 256) 0

_________________________________________________________________

dense_1 (Dense) (None, 128) 32896

_________________________________________________________________

dense_2 (Dense) (None, 10) 1290

=================================================================

Total params: 145,034

Trainable params: 145,034

Non-trainable params: 0

_________________________________________________________________

• Hidden state size: 128

• Dropout rate: 0.05

7


	Part A: Feature Engineering
	Approach
	Results
	Discussion

	Part B: Model Classes
	Approach
	Results
	Discussion

	 Part C: Hyperparameter Tuning and Validation
	Approach
	Results
	Discussion

	Part D: Long Short-Term Memory
	Approach
	Results
	Discussion

	Appendix
	Logistic Regression Class Accuracies
	FFNN Architecture and Hyperparameters
	Nonlinear Model Class Accuracies
	Hyperparameter grid search heatmaps
	LSTM Training Results
	LSTM Architecture and Hyperparameters


