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In contrast to traditional numerical 
methods, PINNs: 

• Provide solutions that are closed-form
• Suffer less from the “curse of 

dimensionality”
• Provide a more accurate interpolation 

scheme
• Can leverage transfer learning for fast 

discovery of new solutions

Further, PINNs do not require an 
underlying grid and offer a meshless 
approach to solving differential 
equations. This makes it possible to use 
trained neural networks, which typically 
have small memory footprints, to 
generate solutions over arbitrary grids in 
a single forward pass.

Classical PINNs solve a differential 
equation 𝐹 = 0 by minimizing some loss 
over the equation residuals, e.g.,
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where Ψ𝜃 is a neural network 
pameterized by 𝜃, 𝒟 is the domain of the 
problem, and the derivatives are 
computed with automatic differentiation. 
PINNs have been successfully applied to a 
wide range of differential equations but 
provide no theoretical justification for the 
use of a particular loss function. To 
address this gap in the theory, we 
propose GANs for solving differential 
equations in a fully unsupervised manner.

Why Neural Networks?

Abstract
Solutions to differential equations are of 
significant scientific and engineering 
relevance. Physics-Informed Neural 
Networks (PINNs) have emerged as a 
promising method for solving differential 
equations, but they lack a theoretical 
justification for the use of any particular 
loss function. This work presents 
Differential Equation GAN (DEQGAN), a 
novel method for solving differential 
equations using generative adversarial 
networks to “learn the loss function” for 
optimizing the neural network. We show 
that DEQGAN can obtain multiple orders 
of magnitude lower mean squared errors 
than PINNs that use 𝐿2, 𝐿1, and Huber 
loss functions and that DEQGAN achieves 
solution accuracies that are competitive 
with popular numerical methods. Finally, 
we present two methods to improve the 
robustness of DEQGAN to different 
hyperparameter settings.

To solve a differential equation, we move 
all terms to the left-hand side (𝐿𝐻𝑆) so 
that the right-hand side (𝑅𝐻𝑆) is zero. 
During training, we sample points from 
the domain 𝑡, 𝐱 ~ 𝒟 and use them as 
input to a generator network 𝐺 𝑥 , which 
produces candidate solutions Ψ𝜃. We 
then adjust Ψ𝜃 for initial and boundary 
conditions to obtain ෡Ψ𝜃 and construct the 
𝐿𝐻𝑆 from the differential equation 𝐹
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We update the weights of the generator 
𝐺 and the discriminator 𝐷 according to 
the gradients 
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Where 𝐿𝐻𝑆 𝑖 is the output of 𝐺 𝑥 𝑖

after adjusting for initial or boundary 
conditions. Informally, our algorithm 
trains a GAN by setting the “fake” 
component to be the 𝐿𝐻𝑆 and the “real” 
to be the 𝑅𝐻𝑆. This results in a GAN that 
learns to produce solutions that make 
𝐿𝐻𝑆 indistinguishable from 𝑅𝐻𝑆, thereby 
approximately solving the equation.

DEQGAN
We conducted experiments on a suite of 
twelve differential equations and found 
that DEQGAN consistently obtained lower 
mean squared errors than classical PINNs 
that use 𝐿2, 𝐿1 and Huber loss functions, 
often by several orders of magnitude. 
Figure 3 plots the mean squared error vs. 
training iteration for DEQGAN and 
classical PINNs on six challenging 
equations. DEQGAN solutions to four 
problems are visualized in Figure 2.

Experimental Results

Figure 1. Schematic representation of DEQGAN. We pass input points 𝑥 to a generator 𝐺, which produces candidate solutions Ψ𝜃.
We analytically adjust these solutions according to Φ and apply automatic differentiation to construct 𝐿𝐻𝑆 from the differential
equation 𝐹. 𝑅𝐻𝑆 and 𝐿𝐻𝑆 are passed to a discriminator 𝐷, which is trained to classify them as “real” and “fake,” respectively.

Figure 3. Mean squared errors vs. iteration for DEQGAN, 𝐿2,
𝐿1, and Huber loss for the (left to right, top to bottom):
nonlinear oscillator, Hamilton, wave, Burgers’, Allen-Cahn,
and modified Einstein’s gravity equations. We perform ten
randomized trials and plot the median (bold) and (25, 75)
percentile range (shaded). We smooth the values using a
simple moving average with window size 50.

In this work, we presented DEQGAN, a 
novel method that leverages GAN-based 
adversarial training to “learn” the loss 
function for solving differential equations 
with PINNs. We demonstrated that our 
method can obtain multiple orders of 
magnitude lower mean squared errors 
than PINNs that use 𝐿2, 𝐿1, and Huber 
loss functions, including on highly 
nonlinear PDEs and systems of ODEs. 
While our results evidence the advantage 
of “learning the loss function” with a 
GAN, future work could focus on 
characterizing the differences between 
classical losses and the loss functions 
learned by DEQGAN, which could deepen 
our understanding of PINN optimization 
more generally.

Conclusion

Figure 2. Visualization of DEQGAN solutions to four example
equations. Solutions to the nonlinear oscillator (top left) and
coupled oscillator (top right) ODEs are plotted in color with
numerical solutions in dashed black lines for comparison.
DEQGAN solutions to the Burgers’ (bottom left) and Allen-
Cahn (bottom right) PDEs are shown using contour plots.


