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1 Introduction

Wildfires can be devastating events that cause severe environmental destruction as well as sub-
stantial loss of resources and human life. The most recent bushfire season in Australia drew global
attention, resulting in 34 deaths, 46 million acres of land burned, and over 9.3 thousand buildings
destroyed - netting $103 billion AUD in costs. More recently, the 2020 wildfire season in the west-
ern United States caused similar devastation: 8 million acres of land and 13.9 thousand buildings
were destroyed, resulting in 37 deaths and $2.7 billion USD in costs. Further, millions of species
have been affected by fires disrupting their habitats, and the long-term health impacts of smoke
exposure are still being studied. In the coming years, climate change may stand to increase the
frequency and severity of wildfire events.

Our project leveraged artificial intelligence and machine learning methods to explore tactics
for mitigating the effects of wildfires. We took a two-pronged approach, first predicting the fire
risk in California counties in each month of the year using tree-based models with historical fire
incident and weather data. We then leveraged mixed integer programming (MIP) using Google’s
OR-Tools package to determine the optimal assignment of limited firefighter personnel resources
based on estimated risk and financial limitations, taking into account both department-affiliated
firefighters and inmate firefighters.

2 Background and Related Work

Applications of artificial intelligence in fire prediction and management have been previously
explored. For example, Vasconvelos et al. utilized neural networks and meteorological data to
predict fire risks in central Portugal [18]. Madaio et al. worked with the Atlanta Fire Rescue de-
partment to create a predictive risk model [14]. Donovan and Rideout use mixed integer program-
ming techniques [11] to identify efficient wildfire management systems with budget constraints
commonly faced by fire managers. However, the system and problem-solving approach elabo-
rated in this report were designed by us.

Of course, the work of tackling wildfires is not simply accomplished by academic groups, but
more importantly by on-the-ground firefighting organizations in California. At the first sign of
a fire, a rapid response team is sent out by a local fire station for the ”first attack.” Here, the
goals are to provide an estimate of the size and to try to contain the fire as quickly as possible
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before it grows out of control. If the fire is not controlled in the first phase, an ”extended attack”
begins and an incident control team is set up to coordinate the wider strategy[12]. Both ”dry”
and ”wet” firefighting methods are employed, preemptively burning areas in the path of the fire,
removing vegetation via axes, plows, chainsaws, and bulldozers, and dousing with water and
flame retardant, both on the ground and via aircrafts[16]. If necessary, reinforcement from other
states, other countries, the national guard, or the U.S. military is brought in.

The importance of the initial attack cannot be overstated. The longer a fire burns, the more out
of control it can become, making reinforcements a last resort option. Since this initial attack is co-
ordinated and completed by local crews, this provides strong motivation to our goal of optimizing
the assignment of firefighters to different counties.

The California wildfire management system has also faced severe scrutiny for its use of prison
labor [13] through their Conservation Camp system [2]. A significant portion of active firefight-
ers in California are inmates who are paid less than $1/hour. One formerly incarcerated lead
firefighting engineer was paid only 37 cents per hour, or $56/month [15], as compared to career
firefighters in CA who are paid $4,500/month with benefits [1]. Inmate firefighters also experi-
ence higher rates of certain injuries [19] and do not have a path to becoming career firefighters
once their sentence is complete.

The Conservation Camp program provides about 3 million hours of response to fires and emer-
gencies, and their services save California taxpayers about $100 million [4]. Inspired by the social
good component of this course, we wanted to explore how undervalued this population is. Due to
the COVID-19 pandemic, many of the correctional facilities that housed these inmate firefighters
were dedensified, leading to a greatly reduced number of inmate firefighters available to attack
this year’s historic wildfire season. By comparing the 2020 occupancy numbers with the full ca-
pacity of these camps, we were able to examine the effects of the pandemic on California’s ability
to address wildfires, the unrecognized value provided by these firefighters, and the exploitative
nature of this program.

3 Problem Specification

In short, this project aimed to leverage artificial intelligence and machine learning techniques to
address two critically important questions related to wildfires: first, how can we predict wildfire
risk across counties and at different times of the year? Second, given these risk estimates, how
should we allocate limited fire response resources?

We addressed the first question using tree-based and ensemble learning methods to make
monthly fire risk classification predictions across California counties, where risk is determined by
total acreage burned per month. To improve the accuracy of our predictions and address imbal-
ances in our original data, we also leveraged minority oversampling techniques. We then tackled
the second question by optimizing the assignment of firefighters across California over the course
of the year, given constraints on the numbers of department-affiliated and inmate firefighters in
each county and using our fire risk predictions as the basis of our objective function. Specifically,
we converted each risk prediction to an average monetary value and minimized total cost after
accounting for wildfire damages and the monthly salaries of department-affiliated and inmate
firefighters.
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4 Approach

4.1 Data Assembly & Processing

The California Department of Forestry and Fire Protection (CAL FIRE) maintains data on wild-
fire incidents, which we accessed via a JSON API [3]. This dataset provides information on the
timing, location, and damage (acres burned) of each fire. We excluded active fires from the anal-
ysis because their impact is still in-progress, and only included observations that are attributed
to a specific county in California, since we focused our analysis on county-level predictions and
allocations.

Along with the wildfire incident data, we also included topographical features of the counties[9]
and historical monthly weather and climate data[8]. We then aggregated the data to the county
and monthly level such that each row in the table represented a county-month pair and contained
information on the total number of acres burned, total number of fires, year, county’s average
elevation, average precipitation, temperature (minimum, average, and maximum), air pressure
(minimum and maximum), population, land area, and water area for the past seventeen years,
from 2003 to 2020. Given the relationship between weather elements and fire incidents, as noted
by the National Weather Service’s Red Flag Program[17], we were particularly interested in ex-
ploring meteorological elements that could signal fire risk. After cleaning and assembling our
data, we used scikit-learn’s method train test split to split the data into a train and test set
for our tree-based prediction models, reserving 20% of the data as the test set on which we evalu-
ated the out-of-sample prediction effectiveness of the model. The other 80% was used for training
and tuning the model.

4.2 Decision Tree & Random Forest Ensembles

After cleaning and processing our data, we moved onto modeling wildfire risk. As seen in Al-
gorithm 1, a decision tree is a commonly used supervised learning algorithm that continuously
splits the data based on certain parameters.

Algorithm 1 Decision Tree Learning Algorithm
procedure DECISION-TREE-LEARNING(examples, attributes, de f ault) returns a decision tree

if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MAJORITY-VALUE

else
best← CHOOSE-ATTRIBUTE(attributes, examples)
tree← a new decision tree with root test best
for each value vi of best do

examplesi ← {elements of examples with best = vi }
tree← DECISION-TREE-LEARNING(examplesi, attributes− best,
MAJORITY-VALUE(examples))

Add a branch to tree with label viand subtree subtree
end for
return tree
=0
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Building upon this basic decision tree learning algorithm, ensemble methods are techniques
that leverage multiple learning algorithms to obtain improved predictive performance. Random
forest is an ensemble method that randomly samples n subsets within the dataset and performs
a best-fit decision tree within each of those bootstrapped datasets. Through this approach, each
decision tree has its own feature set and resulting predictions, and a simple majority of trees de-
termines the classification output. Compared to simple decision trees, random forest provides an
added benefit of reduced variance and overfitting, since it weights random samples with replace-
ment equally within the dataset. To mitigate overfitting, we used random forest classification,
leveraging sci-kit learn’s RandomForestClassifier method.

Initially, fire damage was represented quantitatively in the data, with both number of fires and
number of acres burned as continuous variables. To more effectively fit our use case of classifying
risk level, we binned the acres burned into six groups loosely inspired[7] by the National Wildfire
Coordinating Group’s class system, resulting in a modified response variable that is one of seven
classes.

In order to tune the model hyperparameters, we used out-of-bag error to identify a best-
performing model. In short, OOB error is the average error for each training observation calcu-
lated using predictions from the trees that do not contain that training observation in their respec-
tive bootstrap sample. Specifically, we experimented with different values for n estimators (the
number of trees in the forest) and min samples leaf (the minimum number of samples required
to be at a leaf node).

The resulting random forest model with the best OOB error had 117 estimators and a minimum
of 1 sample required to be at a leaf node, resulting in a 30.8% accuracy on the test set. With random
chance yielding an accuracy of 16.7%, this classification algorithm performed better than random,
but we wanted to improve our predictions.

4.3 Tree-Based Modeling Refinements: Minority Oversampling

As noted above, our initial random forest model had relatively unspectacular performance, with a
test set accuracy of just over 30% (see section 5.1). After digging further into the data, we realized
that the categorical classes of acres burned are highly unbalanced, with two of the seven classes
comprising very few observations, and mid-tier classes out-representing the highest and lowest
tier classes.

To address this, we leveraged the Synthetic Minority Oversampling Technique (SMOTE)[10].
SMOTE is a statistical technique used to increase the number of cases in a dataset in a balanced
way by generating new instances from existing minority cases. We used the Imbalanced-Learn
(imblearn) package to accomplish this. As shown in Figure 1, applying SMOTE balanced the
dataset by oversampling the underrepresented classes to match the frequency of the most popu-
lous class.

Using this balanced data, we then performed a similar random forest modeling approach as
described above. After tuning the parameters through cross-validation and OOB error evalua-
tion, the resulting model had 370 estimators and a minimum of 1 sample required to be at a leaf
node, resulting in a 63% accuracy on the test set - over double that of the previous model and
substantially greater than the accuracy expected from random chance (see section 5.1).

At this point, we had constructed a machine learning model to classify wildfire risk-level
across California counties. In practice, understanding wildfire risk would be only the first step
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in combating the damage these events can cause. Next we used these risk classifications to inform
firefighter resource assignment in combating fires across the state.

Figure 1: Class Distribution Before & After Minority Oversampling

4.4 MIP & Constrained Optimization

To explore the question of resource allocation for fighting wildfires, we focused on human capital:
the number of firefighters that can be deployed to combat fires across California.

To more accurately inform our MIP implementation, we used a dataset containing fire depart-
ments registered to the National Fire Department Registry[5]. This resource contained information
on each department’s location and number of active firefighters, which we matched to the county
level to correspond with our risk classification predictions. It’s worth noting that the FEMA fire
department registry website did not indicate specifically whether a firefighter can be affiliated
with multiple departments. For the purposes of this project, we assumed that departments are
mutually exclusive. We also found data on the inmate firefighter population in California via
the California Department of Corrections and Rehabilitation, which includes information on the
total number of inmates and the total inmate capacity at each of the 43 conservation or ”fire”
camps in the state [2]. Because of the COVID-19 pandemic, fire camps are currently operating at
lower-than-typical capacity. With this in mind, we performed optimization on both actual and full
inmate capacity.

Given that our risk classifications are on a monthly time-scale, we optimized the assignment
of firefighters across the 58 CA counties in each month using the following MIP implementation.

Variables:

c ∈ {1, 2, ..., 58} : the 58 California counties
Xc ∈ {0, 1, ..., ac} : the number of inmate firefighters assigned to county c
Yc ∈ {0, 1, ..., bc} : the number of department-affiliated firefighters assigned to county c

Fc ∈ [0, 2 · 109] : the estimated cost (USD) of wildfire damages in county c
α = 56 : the average monthly cost (USD) of one inmate CA firefighter
β = 4500 : the average monthly cost (USD) of one department-affiliated CA firefighter
γ = 12500 : the estimated cost (USD) of wildfire damages saved per firefighter per month
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Note that ac and bc are the total number of inmate and department-affiliated firefighters, re-
spectively, in county c. These values may be different for each month of the year. The estimated
cost of wildfire damages Fc also changes for each month and is calculated from the monthly pro-
portion of risk (from our tree-based model predictions) in county c, scaled by the total wildfire
damages in California in 2020, which is estimated at $2 billion USD [6]. α, β, and γ were estimated
from labor data as discussed in Section 2 and are assumed to be constant in each month and across
all counties [1].

Constraints:

In addition to the constraints on the possible values of Xc and Yc, we must have that:

Fc − γ(Xc + Yc) ≥ 0

for each county c. That is, the net cost due to wildfire damages and firefighter suppression efforts
is at least zero (when the firefighters suppress fire damages completely).

Objective Function:

Finally, we sought to minimize the total cost across all California counties in a given month
after accounting for the cost of suppression efforts and net wildfire damages, which is given by:

58

∑
c=1

αXc + βYc + Fc − γ(Xc + Yc)

=
58

∑
c=1

Fc + (α− γ)Xc + (β− γ)Yc

5 Experiments & Results

5.1 Comparing Tree-Based Models

As can be seen in Table 1 and Figure 2, applying minority oversampling to our data resulted in
substantially improved predictive accuracy. The plots below illustrate the OOB error rate result-
ing from various combinations of the hyperparameters n estimators and min samples leaf.
After extracting the pair of values with the lowest OOB error, we used these to train and test our
final model. Interestingly, performing minority oversampling also made the difference in OOB
error rate at different values of min samples leaf more stark.
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Test Accuracy

Random Forest: Unbalanced Model 0.31
Random Forest with Oversampling (SMOTE) 0.63

Table 1: Description of the results.

Figure 2: Hyperparameter Tuning of Unbalanced and SMOTE Models

We were also curious about which features were most important in determining splits in the
decision trees. For random forests, each tree is slightly different due to the random sampling of
predictors, which precluded us from generating a visual representation of the model. Instead, we
plotted the feature importance of the top thirteen predictors in our final random forest model. As
shown in Figure 3, feature importance is fairly consistent, with maximum and minimum humidity,
year, and maximum temperature in the top four.

Figure 3: Feature Importance of SMOTE Model: Top Features

In a tangible use-case, one might imagine using this type of model to predict fire risk for future
years given weather forecast data. Given our top four predictors and that weather conditions are
predicted to get hotter and dryer under climate change, our model suggests that we can only
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expect the size of wildfires in California to increase in the coming years.
The improved model performance after minority oversampling is also evident in classification

accuracy. As can be seen in Figure 4, the density of correctly-classified classes increases mea-
surably after applying SMOTE, with classifications concentrated along the diagonal. Incorrectly
classified observations are also frequently concentrated within one or two classes of the true value
(as evidenced by less diagonal spread than the unbalanced model), which is advantageous for a
use-case like this involving risk measurement for resource allocation. Additional measurements
of model precision and recall can be found in Appendix C.

Figure 4: Confusion Matrices: Unbalanced vs. SMOTE Model

5.2 Constrained Optimization

Using our monthly wildfire risk classifications, along with the data and implementation outlined
in Section 4.4, We produced an optimal (as defined by our objective function) assignment of inmate
and department-affiliated firefighters across California counties in each month of the year. In order
to better understand the unique impact of COVID-19 on firefighting resources, we performed the
optimization on both the reduced inmate firefighter capacities this year and the full capacities.

A .csv file containing all assignments can be found in our project GitHub repository (opti-
mized firefighter allocations.csv), and we have displayed the results for two counties in Figure 5.
The plot on the top left shows the optimal number of firefighters to be assigned to Los Angeles
in each month of 2020. As we would expect, the total number of firefighters assigned increases
throughout the summer and peaks in August and September, when wildfire risk is at its peak.
Also notice that the MIP solver assigns inmate firefighters before department-associated firefight-
ers, as can be seen in January, April, and December, because the former is far less costly than
the latter. When demand is high, inmate firefighters are assigned until capacity is reached, as
indicated by the dotted red line.

The plot on the bottom left illustrates the same results when there is full inmate capacity. As be-
fore, the MIP solver assigns inmate firefighters first and until capacity is reached, which is higher
than the reduced capacity due to COVID-19, thereby requiring fewer department-affiliated fire-
fighters than before. To illustrate consistency of results, the plots on the right paint a similar
picture for Humboldt county, which is located in the north of California.

Assuming the state of California seeks to minimize the cost of its wildfire response, our results
also indicate an overreliance on inmate firefighters. By taking the difference between the value of
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our objective function using the reduced inmate capacities and its value at the full capacities, we
estimated that an additional $26 million USD was lost this year due to the reduced numbers of
available inmate firefighters alone. For workers who are paid only 37 cents an hour, this is a huge
loss and a strong indication that the state of California relies heavily on them, without providing
much in return.

Figure 5: MIP Firefighter Assignments to LA and Humboldt Counties

6 Discussion

We predicted monthly wildfire risk in California counties using tree-based classification models.
By converting these risk scores to cost estimates, we defined an objective function based on total
cost in order to determine optimal assignments of department-affiliated and inmate firefighters
using mixed integer programming.

The results of our random forest risk prediction model can be seen in Figure 6. The expected
seasonal trends are immediately apparent - summer months are clearly associated with higher risk
predictions across the state, and this seasonal pattern suggests that resources need not always be
allocated at full capacity. In addition, the feature importance rankings of our final random forest
model illustrated that weather variables, including temperature and humidity, were the best risk
predictors. With climate change expected to impact both of these variables in the coming years,
our model predicts that wildfire risk across California will only increase.

These maps also indicate which counties are more at risk than others, and our predictions
provided the basis for our MIP objective function. The results of our optimized firefighter assign-
ments spawned an interesting consideration regarding the treatment of disadvantaged groups. In
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particular, the low cost of inmate firefighters makes them more likely to be disproportionately put
in harm’s way. As illustrated by 5, the MIP solver assigned all the low-cost inmate firefighters
until capacity was reached. By estimating the effect of the reduced inmate firefighter population
on total cost, we found that an additional $26 million USD was lost this year, even though inmates
are paid only 37 cents per hour.

Figure 6: California County Wildfire Risk Map by Month

This exemplifies a broader concern regarding algorithmic approaches to resource allocation,
particularly when human subjects are involved: disadvantaged groups (such as the inmate fire-
fighter population) may have lower cost structures associated with them, resulting in dispropor-
tionate demand for their labor. There is also evidence to suggest that inmate firefighters are dis-
proportionately harmed compared to civilian and professional firefighters: they are more than
four times as likely to incur object-induced injuries and over eight times as likely to be injured af-
ter inhaling smoke and particulates in the air as compared to civilian firefighters. [19] To address
these concerns, we could refine our approach by adding constraints designed to protect the inmate
firefighter population, for example by limiting the proportion of fire camp residents that can be
assigned or by reducing their maximum working hours. Future iterations of this product could
also increase the accuracy of our predictions by leveraging sub-county, rather than county-level
data. Given the size and geographic diversity of California counties, this approach might yield
different and interesting results.
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A System Description

Code and results can be found at the following GitHub Repo:
https://github.com/teresadatta/CA-Wildfire-Risk-Prediction-and-Optimization
Detailed descriptions are in the README.md. Feel free to contact our group if there are any

questions or issues.

B Group Makeup

We operated very collaboratively and cohesively on this project and worked together to complete
each of the above components. Some areas where we each contributed more:

Blake Bullwinkel: Constrained Optimization
Teresa Datta: Chloropleth maps, Data wrangling for Constrained Opimization
Kristen Grabarz: Minority Oversampling via SMOTE, Data Collecting

C Additional Plots & Charts

Figure 7: SMOTE Random Forest Model: Class Precision & Recall

Figure 8: Balanced Model: Classification Accuracy Spectrum
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